Add files via upload
This commit is contained in:
218
code/new/linpack.f
Normal file
218
code/new/linpack.f
Normal file
@ -0,0 +1,218 @@
|
||||
c
|
||||
c L-BFGS-B is released under the “New BSD License” (aka “Modified BSD License”
|
||||
c or “3-clause license”)
|
||||
c Please read attached file License.txt
|
||||
c
|
||||
subroutine dpofa(a,lda,n,info)
|
||||
integer lda,n,info
|
||||
double precision a(lda,*)
|
||||
c
|
||||
c dpofa factors a double precision symmetric positive definite
|
||||
c matrix.
|
||||
c
|
||||
c dpofa is usually called by dpoco, but it can be called
|
||||
c directly with a saving in time if rcond is not needed.
|
||||
c (time for dpoco) = (1 + 18/n)*(time for dpofa) .
|
||||
c
|
||||
c on entry
|
||||
c
|
||||
c a double precision(lda, n)
|
||||
c the symmetric matrix to be factored. only the
|
||||
c diagonal and upper triangle are used.
|
||||
c
|
||||
c lda integer
|
||||
c the leading dimension of the array a .
|
||||
c
|
||||
c n integer
|
||||
c the order of the matrix a .
|
||||
c
|
||||
c on return
|
||||
c
|
||||
c a an upper triangular matrix r so that a = trans(r)*r
|
||||
c where trans(r) is the transpose.
|
||||
c the strict lower triangle is unaltered.
|
||||
c if info .ne. 0 , the factorization is not complete.
|
||||
c
|
||||
c info integer
|
||||
c = 0 for normal return.
|
||||
c = k signals an error condition. the leading minor
|
||||
c of order k is not positive definite.
|
||||
c
|
||||
c linpack. this version dated 08/14/78 .
|
||||
c cleve moler, university of new mexico, argonne national lab.
|
||||
c
|
||||
c subroutines and functions
|
||||
c
|
||||
c blas ddot
|
||||
c fortran sqrt
|
||||
c
|
||||
c internal variables
|
||||
c
|
||||
double precision ddot,t
|
||||
double precision s
|
||||
integer j,jm1,k
|
||||
c begin block with ...exits to 40
|
||||
c
|
||||
c
|
||||
do 30 j = 1, n
|
||||
info = j
|
||||
s = 0.0d0
|
||||
jm1 = j - 1
|
||||
if (jm1 .lt. 1) go to 20
|
||||
do 10 k = 1, jm1
|
||||
t = a(k,j) - ddot(k-1,a(1,k),1,a(1,j),1)
|
||||
t = t/a(k,k)
|
||||
a(k,j) = t
|
||||
s = s + t*t
|
||||
10 continue
|
||||
20 continue
|
||||
s = a(j,j) - s
|
||||
c ......exit
|
||||
if (s .le. 0.0d0) go to 40
|
||||
a(j,j) = sqrt(s)
|
||||
30 continue
|
||||
info = 0
|
||||
40 continue
|
||||
return
|
||||
end
|
||||
|
||||
c====================== The end of dpofa ===============================
|
||||
|
||||
subroutine dtrsl(t,ldt,n,b,job,info)
|
||||
integer ldt,n,job,info
|
||||
double precision t(ldt,*),b(*)
|
||||
c
|
||||
c
|
||||
c dtrsl solves systems of the form
|
||||
c
|
||||
c t * x = b
|
||||
c or
|
||||
c trans(t) * x = b
|
||||
c
|
||||
c where t is a triangular matrix of order n. here trans(t)
|
||||
c denotes the transpose of the matrix t.
|
||||
c
|
||||
c on entry
|
||||
c
|
||||
c t double precision(ldt,n)
|
||||
c t contains the matrix of the system. the zero
|
||||
c elements of the matrix are not referenced, and
|
||||
c the corresponding elements of the array can be
|
||||
c used to store other information.
|
||||
c
|
||||
c ldt integer
|
||||
c ldt is the leading dimension of the array t.
|
||||
c
|
||||
c n integer
|
||||
c n is the order of the system.
|
||||
c
|
||||
c b double precision(n).
|
||||
c b contains the right hand side of the system.
|
||||
c
|
||||
c job integer
|
||||
c job specifies what kind of system is to be solved.
|
||||
c if job is
|
||||
c
|
||||
c 00 solve t*x=b, t lower triangular,
|
||||
c 01 solve t*x=b, t upper triangular,
|
||||
c 10 solve trans(t)*x=b, t lower triangular,
|
||||
c 11 solve trans(t)*x=b, t upper triangular.
|
||||
c
|
||||
c on return
|
||||
c
|
||||
c b b contains the solution, if info .eq. 0.
|
||||
c otherwise b is unaltered.
|
||||
c
|
||||
c info integer
|
||||
c info contains zero if the system is nonsingular.
|
||||
c otherwise info contains the index of
|
||||
c the first zero diagonal element of t.
|
||||
c
|
||||
c linpack. this version dated 08/14/78 .
|
||||
c g. w. stewart, university of maryland, argonne national lab.
|
||||
c
|
||||
c subroutines and functions
|
||||
c
|
||||
c blas daxpy,ddot
|
||||
c fortran mod
|
||||
c
|
||||
c internal variables
|
||||
c
|
||||
double precision ddot,temp
|
||||
integer case,j,jj
|
||||
c
|
||||
c begin block permitting ...exits to 150
|
||||
c
|
||||
c check for zero diagonal elements.
|
||||
c
|
||||
do 10 info = 1, n
|
||||
c ......exit
|
||||
if (t(info,info) .eq. 0.0d0) go to 150
|
||||
10 continue
|
||||
info = 0
|
||||
c
|
||||
c determine the task and go to it.
|
||||
c
|
||||
case = 1
|
||||
if (mod(job,10) .ne. 0) case = 2
|
||||
if (mod(job,100)/10 .ne. 0) case = case + 2
|
||||
go to (20,50,80,110), case
|
||||
c
|
||||
c solve t*x=b for t lower triangular
|
||||
c
|
||||
20 continue
|
||||
b(1) = b(1)/t(1,1)
|
||||
if (n .lt. 2) go to 40
|
||||
do 30 j = 2, n
|
||||
temp = -b(j-1)
|
||||
call daxpy(n-j+1,temp,t(j,j-1),1,b(j),1)
|
||||
b(j) = b(j)/t(j,j)
|
||||
30 continue
|
||||
40 continue
|
||||
go to 140
|
||||
c
|
||||
c solve t*x=b for t upper triangular.
|
||||
c
|
||||
50 continue
|
||||
b(n) = b(n)/t(n,n)
|
||||
if (n .lt. 2) go to 70
|
||||
do 60 jj = 2, n
|
||||
j = n - jj + 1
|
||||
temp = -b(j+1)
|
||||
call daxpy(j,temp,t(1,j+1),1,b(1),1)
|
||||
b(j) = b(j)/t(j,j)
|
||||
60 continue
|
||||
70 continue
|
||||
go to 140
|
||||
c
|
||||
c solve trans(t)*x=b for t lower triangular.
|
||||
c
|
||||
80 continue
|
||||
b(n) = b(n)/t(n,n)
|
||||
if (n .lt. 2) go to 100
|
||||
do 90 jj = 2, n
|
||||
j = n - jj + 1
|
||||
b(j) = b(j) - ddot(jj-1,t(j+1,j),1,b(j+1),1)
|
||||
b(j) = b(j)/t(j,j)
|
||||
90 continue
|
||||
100 continue
|
||||
go to 140
|
||||
c
|
||||
c solve trans(t)*x=b for t upper triangular.
|
||||
c
|
||||
110 continue
|
||||
b(1) = b(1)/t(1,1)
|
||||
if (n .lt. 2) go to 130
|
||||
do 120 j = 2, n
|
||||
b(j) = b(j) - ddot(j-1,t(1,j),1,b(1),1)
|
||||
b(j) = b(j)/t(j,j)
|
||||
120 continue
|
||||
130 continue
|
||||
140 continue
|
||||
150 continue
|
||||
return
|
||||
end
|
||||
|
||||
c====================== The end of dtrsl ===============================
|
||||
|
||||
|
Reference in New Issue
Block a user