!$Id: gosat_co2_mod.f,v 1.2 2011/02/23 00:08:48 daven Exp $ MODULE GOSAT_CO2_MOD IMPLICIT NONE !================================================================= ! MODULE VARIABLES !================================================================= ! Parameters INTEGER, PARAMETER :: MAXLEV = 20 INTEGER, PARAMETER :: MAXGOS = 2000 ! Record to store data from each GOS obs TYPE GOS_CO2_OBS INTEGER :: LGOS(1) REAL*8 :: LAT(1) REAL*8 :: LON(1) REAL*8 :: TIME(1) REAL*8 :: CO2(MAXLEV) REAL*8 :: PRES(MAXLEV) REAL*8 :: PRIOR(MAXLEV) REAL*8 :: AVG_KERNEL(MAXLEV,MAXLEV) REAL*8 :: S_OER(MAXLEV,MAXLEV) REAL*8 :: S_OER_INV(MAXLEV,MAXLEV) INTEGER :: QF(1) ENDTYPE GOS_CO2_OBS TYPE(GOS_CO2_OBS) :: GOS(MAXGOS) ! IDTCO2 isn't defined in tracerid_mod because people just assume ! it is one. Define it here for now as a temporary patch. INTEGER, PARAMETER :: IDTCO2 = 1 ! Same thing for TCVV(IDTCO2) REAL*8, PARAMETER :: TCVV_CO2 = 28.97d0 / 44d0 CONTAINS !------------------------------------------------------------------------------ SUBROUTINE READ_GOS_CO2_OBS( YYYYMMDD, NGOS ) ! !****************************************************************************** ! Subroutine READ_GOS_CO2_OBS reads the file and passes back info contained ! therein. (dkh, 10/12/10) ! ! Based on READ_TES_NH3 OBS (dkh, 04/26/10) ! ! Arguments as Input: ! ============================================================================ ! (1 ) YYYYMMDD INTEGER : Current year-month-day ! ! Arguments as Output: ! ============================================================================ ! (1 ) NGOS (INTEGER) : Number of GOS retrievals for current day ! ! Module variable as Output: ! ============================================================================ ! (1 ) GOS (GOS_CO2_OBS) : CO2 retrieval for current day ! ! NOTES: ! (1 ) Add calculation of S_OER_INV, though eventually we probably want to ! do this offline. (dkh, 05/04/10) !****************************************************************************** ! ! Reference to f90 modules USE DIRECTORY_MOD, ONLY : DATA_DIR USE NETCDF USE TIME_MOD, ONLY : EXPAND_DATE ! Arguments INTEGER, INTENT(IN) :: YYYYMMDD ! local variables INTEGER :: FID INTEGER :: LGOS INTEGER :: NGOS INTEGER :: START0(1), COUNT0(1) INTEGER :: START1(2), COUNT1(2) INTEGER :: START2(3), COUNT2(3) INTEGER :: N, J INTEGER :: NT_ID INTEGER :: CO2_ID INTEGER :: PS_ID INTEGER :: AK_ID INTEGER :: OE_ID INTEGER :: AP_ID INTEGER :: LA_ID INTEGER :: LO_ID INTEGER :: DY_ID INTEGER :: TM_ID INTEGER :: LV_ID INTEGER :: OI_ID INTEGER :: QF_ID CHARACTER(LEN=5) :: TMP CHARACTER(LEN=255) :: READ_FILENAME REAL*8, PARAMETER :: FILL = -999.0D0 REAL*8, PARAMETER :: TOL = 1d-04 REAL*8 :: U(MAXLEV,MAXLEV) REAL*8 :: VT(MAXLEV,MAXLEV) REAL*8 :: S(MAXLEV) REAL*8 :: TMP1 REAL*8 :: TEST(MAXLEV,MAXLEV) INTEGER :: I, II, III !================================================================= ! READ_GOS_CO2_OBS begins here! !================================================================= ! filename root READ_FILENAME = TRIM( 'acos-v27-YYYYMMDD.nc' ) ! Expand date tokens in filename CALL EXPAND_DATE( READ_FILENAME, YYYYMMDD, 9999 ) ! Construct complete filename READ_FILENAME = TRIM( DATA_DIR ) // TRIM( '../GOSAT_CO2/' ) // & TRIM( READ_FILENAME ) WRITE(6,*) ' - READ_GOSAT_CO2_OBS: reading file: ', & READ_FILENAME ! Open file and assign file id (FID) CALL CHECK( NF90_OPEN( READ_FILENAME, NF90_NOWRITE, FID ), 0 ) !-------------------------------- ! Get data record IDs !-------------------------------- CALL CHECK( NF90_INQ_DIMID( FID, "nSamples", NT_ID), 102 ) CALL CHECK( NF90_INQ_VARID( FID, "species", CO2_ID ), 102 ) CALL CHECK( NF90_INQ_VARID( FID, "averagingKernel", AK_ID ), 104 ) CALL CHECK( NF90_INQ_VARID( FID, "pressure", PS_ID ), 105 ) ! CALL CHECK( NF90_INQ_VARID( FID, "observationerrorcovariance", ! & OE_ID ), 106 ) CALL CHECK( NF90_INQ_VARID( FID, "constraintvector",AP_ID ), 107 ) CALL CHECK( NF90_INQ_VARID( FID, "latitude", LA_ID ), 108 ) CALL CHECK( NF90_INQ_VARID( FID, "longitude", LO_ID ), 109 ) CALL CHECK( NF90_INQ_VARID( FID, "date", DY_ID ), 110 ) CALL CHECK( NF90_INQ_VARID( FID, "time", TM_ID ), 111 ) CALL CHECK( NF90_INQ_VARID( FID, "invCovariance", & OI_ID ), 112 ) CALL CHECK( NF90_INQ_VARID( FID, "lev", LV_ID ), 113 ) ! READ number of retrievals, NGOS CALL CHECK( NF90_INQUIRE_DIMENSION( FID, NT_ID, TMP, NGOS), 202 ) ! READ quality flag CALL CHECK( NF90_INQ_VARID( FID, "usability", QF_ID ), 114 ) print*, ' NGOS = ', NGOS !-------------------------------- ! Read 0D Data !-------------------------------- ! define record size START0 = (/1/) COUNT0 = (/1/) ! loop over records DO N = 1, NGOS ! Update starting index START0(1) = N ! READ latitude CALL CHECK( NF90_GET_VAR ( FID, LA_ID, & GOS(N)%LAT, START0, COUNT0 ), 301 ) ! READ longitude CALL CHECK( NF90_GET_VAR ( FID, LO_ID, & GOS(N)%LON, START0, COUNT0 ), 302 ) ! READ time CALL CHECK( NF90_GET_VAR ( FID, TM_ID, & GOS(N)%TIME, START0, COUNT0 ), 303 ) ! for GOSAT CO2, need to convert from HH.hour_frac to fraction of day GOS(N)%TIME(1) = GOS(N)%TIME(1) / 24d0 ! READ levels CALL CHECK( NF90_GET_VAR ( FID, LV_ID, & GOS(N)%LGOS, START0, COUNT0 ), 304 ) ! READ quality flag aka "usability" CALL CHECK( NF90_GET_VAR ( FID, QF_ID, & GOS(N)%QF, START0, COUNT0 ), 305 ) ENDDO ! debuggg print*, ' passed 0-D' print*, ' lev read in = ', GOS(1)%LGOS !-------------------------------- ! Find # of good levels for each !-------------------------------- ! define record size START1 = (/1, 1/) COUNT1 = (/MAXLEV, 1/) ! loop over records DO N = 1, NGOS ! Update starting index START1(2) = N ! READ CO2 column, CO2 CALL CHECK( NF90_GET_VAR ( FID, CO2_ID, & GOS(N)%CO2(1:MAXLEV), START1, COUNT1 ), 401 ) ! For CO2, we now read the number of good levels in from the data file itself ! ! Now determine how many of the levels in CO2 are ! ! 'good' and how many are just FILL. ! J = 1 ! DO WHILE ( J .le. MAXLEV ) ! ! ! check if the value is good ! IF ( GOS(N)%CO2(J) > FILL ) THEN ! ! ! save the number of good levels as LGOS ! GOS(N)%LGOS = MAXLEV - J + 1 ! ! ! and now we can exit the while loop ! J = MAXLEV + 1 ! ! ! otherwise this level is just filler ! ELSE ! ! ! so proceed to the next one up ! J = J + 1 ! ! ENDIF ! ! ENDDO ENDDO ! debuggg print*, ' passed 1-D a' print*, ' lev calc = ', GOS(1)%LGOS !-------------------------------- ! Read 1D Data !-------------------------------- ! loop over records DO N = 1, NGOS ! J is number of good levels J = GOS(N)%LGOS(1) ! define record size ! for CO2, filler values are at the end, not the beginning !START1 = (/MAXLEV - J + 1, 1/) START1 = (/1, 1/) COUNT1 = (/J, 1/) ! Update starting index START1(2) = N ! READ CO2 column, CO2 CALL CHECK( NF90_GET_VAR ( FID, CO2_ID, & GOS(N)%CO2(1:J), START1, COUNT1 ), 401 ) ! READ pressure levels, PRES CALL CHECK( NF90_GET_VAR ( FID, PS_ID, & GOS(N)%PRES(1:J), START1, COUNT1 ), 402 ) ! READ apriori CO2 column, PRIOR CALL CHECK( NF90_GET_VAR ( FID, AP_ID, & GOS(N)%PRIOR(1:J), START1, COUNT1 ), 403 ) ENDDO ! debuggg print*, ' passed 1-D b' !-------------------------------- ! Read 2D Data !-------------------------------- ! loop over records DO N = 1, NGOS ! J is number of good levels J = GOS(N)%LGOS(1) ! define record size ! for CO2, filler values are at the end, not the beginning !START2 = (/MAXLEV - J + 1, MAXLEV - J + 1, 1/) START2 = (/1, 1, 1/) COUNT2 = (/J, J, 1/) ! Update starting index START2(3) = N ! READ averaging kernal, AVG_KERNEL CALL CHECK( NF90_GET_VAR ( FID, AK_ID, & GOS(N)%AVG_KERNEL(1:J,1:J), START2, COUNT2), 501 ) ! ! READ observational error covariance ! CALL CHECK( NF90_GET_VAR ( FID, OE_ID, ! & GOS(N)%S_OER(1:J,1:J), START2, COUNT2), 502 ) ! READ observational error covariance inverse CALL CHECK( NF90_GET_VAR ( FID, OI_ID, & GOS(N)%S_OER_INV(1:J,1:J), START2, COUNT2), 503 ) ENDDO ! Close the file CALL CHECK( NF90_CLOSE( FID ), 9999 ) ! debuggg print*, ' passed 2-D ' print*, ' CO2 prof = ', GOS(1)%CO2(:) print*, ' CO2 levels = ', GOS(1)%LGOS(1) print*, ' CO2 time = ', GOS(1)%TIME(1) ! !-------------------------------- ! ! Calculate S_OER_INV ! !-------------------------------- ! ! ! loop over records ! DO N = 1, NGOS ! ! J = GOS(N)%LGOS(1) ! ! ! add regularization ! DO II=1,J ! GOS(N)%S_OER(II,II) = GOS(N)%S_OER(II,II)+ 0.001D0 ! ENDDO ! ! CALL DGESVD_EXAMPLE ! ! CALL SVD( GOS(N)%S_OER(1:J,1:J), J, ! & U(1:J,1:J), S(1:J), ! & VT(1:J,1:J) ) ! ! ! debuggg ! print*, ' passed SVD 1' ! ! ! U = S^-1 * U^T ! DO I = 1, J ! DO II = 1, J ! TEST(I,II) = U(II,I) / S(I) ! ENDDO ! ENDDO ! U = TEST ! TEST = 0d0 ! ! ! debuggg ! print*, ' passed SVD 2' ! ! ! S_OER_INV = V * S^-1 * U^T ! DO I = 1, J ! DO II = 1, J ! TMP1 = 0d0 ! DO III = 1, J ! TMP1 = TMP1 + VT(III,I) * U(III,II) ! ENDDO ! GOS(N)%S_OER_INV(I,II) = TMP1 ! ENDDO ! ENDDO ! ! ! debuggg ! print*, ' passed SVD 3' ! ! ! TEST: calculate 2-norm of I - S_OER_INV * S_OER ! DO I = 1, J ! DO II = 1, J ! TMP1 = 0d0 ! DO III = 1, J ! TMP1 = TMP1 ! & + GOS(N)%S_OER_INV(III,I) * GOS(N)%S_OER(III,II) ! ENDDO ! TEST(I,II) = - TMP1 ! ENDDO ! TEST(I,I) = ( TEST(I,I) + 1 ) ** 2 ! ENDDO ! ! ! debuggg ! print*, ' passed SVD 4' ! ! ! IF ( SUM(TEST(1:J,1:J)) > TOL ) THEN ! print*, ' WARNING: inversion error for retv N = ', ! & SUM(TEST(1:J,1:J)), N ! print*, ' in GOS obs ', READ_FILENAME ! ENDIF ! ! ENDDO ! N ! ! ! debuggg ! print*, ' passed SVD f' ! Return to calling program END SUBROUTINE READ_GOS_CO2_OBS !------------------------------------------------------------------------------ SUBROUTINE CHECK( STATUS, LOCATION ) ! !****************************************************************************** ! Subroutine CHECK checks the status of calls to netCDF libraries routines ! (dkh, 02/15/09) ! ! Arguments as Input: ! ============================================================================ ! (1 ) STATUS (INTEGER) : Completion status of netCDF library call ! (2 ) LOCATION (INTEGER) : Location at which netCDF library call was made ! ! ! NOTES: ! !****************************************************************************** ! ! Reference to f90 modules USE ERROR_MOD, ONLY : ERROR_STOP USE NETCDF ! Arguments INTEGER, INTENT(IN) :: STATUS INTEGER, INTENT(IN) :: LOCATION !================================================================= ! CHECK begins here! !================================================================= IF ( STATUS /= NF90_NOERR ) THEN WRITE(6,*) TRIM( NF90_STRERROR( STATUS ) ) WRITE(6,*) 'At location = ', LOCATION CALL ERROR_STOP('netCDF error', 'tes_nh3_mod') ENDIF ! Return to calling program END SUBROUTINE CHECK !------------------------------------------------------------------------------ SUBROUTINE CALC_GOS_CO2_FORCE( COST_FUNC ) ! !****************************************************************************** ! Subroutine CALC_GOS_CO2_FORCE calculates the adjoint forcing from the GOSAT ! CO2 observations and updates the cost function. (dkh, 10/12/10) ! ! ! Arguments as Input/Output: ! ============================================================================ ! (1 ) COST_FUNC (REAL*8) : Cost funciton [unitless] ! ! ! NOTES: ! !****************************************************************************** ! ! Reference to f90 modules USE ADJ_ARRAYS_MOD, ONLY : STT_ADJ USE ADJ_ARRAYS_MOD, ONLY : N_CALC USE ADJ_ARRAYS_MOD, ONLY : EXPAND_NAME USE CHECKPT_MOD, ONLY : CHK_STT USE COMODE_MOD, ONLY : CSPEC, JLOP USE DAO_MOD, ONLY : AD USE DAO_MOD, ONLY : AIRDEN USE DAO_MOD, ONLY : BXHEIGHT USE DIRECTORY_ADJ_MOD, ONLY : DIAGADJ_DIR USE GRID_MOD, ONLY : GET_IJ USE PRESSURE_MOD, ONLY : GET_PCENTER, GET_PEDGE USE TIME_MOD, ONLY : GET_NYMD, GET_NHMS USE TIME_MOD, ONLY : GET_TS_CHEM USE TRACER_MOD, ONLY : XNUMOLAIR USE TROPOPAUSE_MOD, ONLY : ITS_IN_THE_TROP # include "CMN_SIZE" ! Size params ! Arguments REAL*8, INTENT(INOUT) :: COST_FUNC ! Local variables INTEGER :: NTSTART, NTSTOP, NT INTEGER :: IIJJ(2), I, J INTEGER :: L, LL, LGOS INTEGER :: JLOOP REAL*8 :: GC_PRES(LLPAR) REAL*8 :: GC_CO2_NATIVE(LLPAR) REAL*8 :: GC_CO2(MAXLEV) REAL*8 :: GC_PSURF REAL*8 :: MAP(LLPAR,MAXLEV) REAL*8 :: CO2_HAT(MAXLEV) REAL*8 :: CO2_PERT(MAXLEV) REAL*8 :: FORCE(MAXLEV) REAL*8 :: DIFF(MAXLEV) REAL*8 :: NEW_COST(MAXGOS) REAL*8 :: OLD_COST REAL*8, SAVE :: TIME_FRAC(MAXGOS) INTEGER,SAVE :: NGOS REAL*8 :: GC_CO2_NATIVE_ADJ(LLPAR) REAL*8 :: CO2_HAT_ADJ(MAXLEV) REAL*8 :: CO2_PERT_ADJ(MAXLEV) REAL*8 :: GC_CO2_ADJ(MAXLEV) REAL*8 :: DIFF_ADJ(MAXLEV) LOGICAL, SAVE :: FIRST = .TRUE. INTEGER :: IOS CHARACTER(LEN=255) :: FILENAME !================================================================= ! CALC_GOS_CO2_FORCE begins here! !================================================================= print*, ' - CALC_GOS_CO2_FORCE ' ! Reset NEW_COST = 0D0 ! Open files for diagnostic output IF ( FIRST ) THEN FILENAME = 'pres.NN.m' CALL EXPAND_NAME( FILENAME, N_CALC ) FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) OPEN( 101, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) FILENAME = 'gc_co2.NN.m' CALL EXPAND_NAME( FILENAME, N_CALC ) FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) OPEN( 102, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) FILENAME = 'tes_co2.NN.m' CALL EXPAND_NAME( FILENAME, N_CALC ) FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) OPEN( 103, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) FILENAME = 'apriori.NN.m' CALL EXPAND_NAME( FILENAME, N_CALC ) FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) OPEN( 104, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) FILENAME = 'diff.NN.m' CALL EXPAND_NAME( FILENAME, N_CALC ) FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) OPEN( 105, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) FILENAME = 'force.NN.m' CALL EXPAND_NAME( FILENAME, N_CALC ) FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) OPEN( 106, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) FILENAME = 'nt_ll.NN.m' CALL EXPAND_NAME( FILENAME, N_CALC ) FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) OPEN( 107, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) FILENAME = 'co2_pert_adj.NN.m' CALL EXPAND_NAME( FILENAME, N_CALC ) FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) OPEN( 108, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) FILENAME = 'gc_co2_adj.NN.m' CALL EXPAND_NAME( FILENAME, N_CALC ) FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) OPEN( 109, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) FILENAME = 'exp_co2_hat.NN.m' CALL EXPAND_NAME( FILENAME, N_CALC ) FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) OPEN( 110, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) FILENAME = 'gc_press.NN.m' CALL EXPAND_NAME( FILENAME, N_CALC ) FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) OPEN( 111, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) FILENAME = 'gc_co2_native.NN.m' CALL EXPAND_NAME( FILENAME, N_CALC ) FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) OPEN( 112, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) FILENAME = 'gc_co2_on_tes.NN.m' CALL EXPAND_NAME( FILENAME, N_CALC ) FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) OPEN( 113, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) FILENAME = 'gc_co2_native_adj.NN.m' CALL EXPAND_NAME( FILENAME, N_CALC ) FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) OPEN( 114, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) ENDIF ! Save a value of the cost function first OLD_COST = COST_FUNC ! Check if it is the last hour of a day IF ( GET_NHMS() == 236000 - GET_TS_CHEM() * 100 ) THEN ! Read the GOS CO2 file for this day CALL READ_GOS_CO2_OBS( GET_NYMD(), NGOS ) ! TIME is YYYYMMDD.frac-of-day. Subtract date and save just time fraction ! Don't need to adjust this for GOSAT CO2, for which TIME is already ! just the time fraction. TIME_FRAC(1:NGOS) = GOS(1:NGOS)%TIME(1) ENDIF ! Get the range of GOS retrievals for the current hour CALL GET_NT_RANGE( NGOS, GET_NHMS(), TIME_FRAC, NTSTART, NTSTOP ) IF ( NTSTART == 0 .and. NTSTOP == 0 ) THEN print*, ' No matching GOS CO2 obs for this hour' RETURN ENDIF print*, ' for hour range: ', GET_NHMS(), TIME_FRAC(NTSTART), & TIME_FRAC(NTSTOP) print*, ' found record range: ', NTSTART, NTSTOP ! need to update this in order to do i/o with this loop parallel !! ! Now do a parallel loop for analyzing data !!$OMP PARALLEL DO !!$OMP+DEFAULT( SHARED ) !!$OMP+PRIVATE( NT, MAP, LGOS, IIJJ, I, J, L, LL, JLOOP ) !!$OMP+PRIVATE( GC_PRES, GC_PSURF, GC_CO2, DIFF ) !!$OMP+PRIVATE( GC_CO2_NATIVE, CO2_PERT, CO2_HAT, FORCE ) !!$OMP+PRIVATE( GC_CO2_NATIVE_ADJ, GC_CO2_ADJ ) !!$OMP+PRIVATE( CO2_PERT_ADJ, CO2_HAT_ADJ ) !!$OMP+PRIVATE( DIFF_ADJ ) DO NT = NTSTART, NTSTOP, -1 print*, ' - CALC_GOS_CO2_FORCE: analyzing record ', NT ! quality screening IF ( GOS(NT)%QF(1) == 0 ) THEN print*, ' BAD QF, skipping record ', NT CYCLE ENDIF ! skip antarctica IF ( GOS(NT)%LAT(1) < -60d0 ) THEN print*, ' Skipp all data with latitude < 50 S ', NT CYCLE ENDIF ! For safety, initialize these up to LLGOS GC_CO2(:) = 0d0 MAP(:,:) = 0d0 CO2_HAT_ADJ(:) = 0d0 FORCE(:) = 0d0 ! Copy LGOS to make coding a bit cleaner LGOS = GOS(NT)%LGOS(1) ! Get grid box of current record IIJJ = GET_IJ( REAL(GOS(NT)%LON(1),4), REAL(GOS(NT)%LAT(1),4)) I = IIJJ(1) J = IIJJ(2) ! dkh debug print*, 'I,J = ', I, J ! Get GC pressure levels (mbar) DO L = 1, LLPAR GC_PRES(L) = GET_PCENTER(I,J,L) ENDDO ! Get GC surface pressure (mbar) GC_PSURF = GET_PEDGE(I,J,1) ! Calculate the interpolation weight matrix MAP(1:LLPAR,1:LGOS) & = GET_INTMAP( LLPAR, GC_PRES(:), GC_PSURF, & LGOS, GOS(NT)%PRES(1:LGOS), GC_PSURF ) ! Get CO2 values at native model resolution GC_CO2_NATIVE(:) = CHK_STT(I,J,:,IDTCO2) ! Convert from kg/box to v/v GC_CO2_NATIVE(:) = GC_CO2_NATIVE(:) * TCVV_CO2 & / AD(I,J,:) ! Interpolate GC CO2 column to TES grid DO LL = 1, LGOS GC_CO2(LL) = 0d0 DO L = 1, LLPAR GC_CO2(LL) = GC_CO2(LL) & + MAP(L,LL) * GC_CO2_NATIVE(L) ENDDO ENDDO ! dkh debug: compare profiles: print*, ' GC_PRES, GC_native_CO2 [ppm] ' WRITE(6,100) (GC_PRES(L), GC_CO2_NATIVE(L)*1d6, & L = LLPAR, 1, -1 ) print*, ' GOS_PRES, GC_CO2 ' WRITE(6,100) (GOS(NT)%PRES(LL), & GC_CO2(LL)*1d6, LL = LGOS, 1, -1 ) 100 FORMAT(1X,F16.8,1X,F20.8) !-------------------------------------------------------------- ! Apply GOS observation operator ! ! x_hat = x_a + A_k ( x_m - x_a ) ! ! where ! x_hat = GC modeled column as seen by TES [vmr] ! x_a = GOS apriori column [vmr] ! x_m = GC modeled column [vmr] ! A_k = GOS averaging kernel !-------------------------------------------------------------- ! x_m - x_a DO L = 1, LGOS CO2_PERT(L) = GC_CO2(L) - GOS(NT)%PRIOR(L) ENDDO ! x_a + A_k * ( x_m - x_a ) DO L = 1, LGOS CO2_HAT(L) = 0d0 DO LL = 1, LGOS CO2_HAT(L) = CO2_HAT(L) & + GOS(NT)%AVG_KERNEL(L,LL) * CO2_PERT(LL) ENDDO CO2_HAT(L) = CO2_HAT(L) + GOS(NT)%PRIOR(L) ENDDO !-------------------------------------------------------------- ! Calculate cost function, given S is error in vmr ! J = 1/2 [ model - obs ]^T S_{obs}^{-1} [ model - obs ] !-------------------------------------------------------------- ! Calculate difference between modeled and observed profile DO L = 1, LGOS DIFF(L) = CO2_HAT(L) - GOS(NT)%CO2(L) ENDDO ! Calculate 1/2 * DIFF^T * S_{obs}^{-1} * DIFF DO L = 1, LGOS FORCE(L) = 0d0 DO LL = 1, LGOS FORCE(L) = FORCE(L) + GOS(NT)%S_OER_INV(L,LL) * DIFF(LL) ENDDO NEW_COST(NT) = NEW_COST(NT) + 0.5d0 * DIFF(L) * FORCE(L) ENDDO ! dkh debug: compare profiles: print*, ' TES_PRIOR, CO2_HAT, CO2_GOS [ppm], diag(S^-1)' WRITE(6,101) ( 1d6 * GOS(NT)%PRIOR(L), & 1d6 * CO2_HAT(L), & 1d6 * GOS(NT)%CO2(L), & GOS(NT)%S_OER_INV(L,L), & L, L = LGOS, 1, -1 ) 101 FORMAT(1X,F16.8,1X,F16.8,1X,F16.8,1X,d14.6,1x,i3) !-------------------------------------------------------------- ! Begin adjoint calculations !-------------------------------------------------------------- ! dkh debug print*, 'DIFF , FORCE ' WRITE(6,102) (DIFF(L), FORCE(L), & L = LGOS, 1, -1 ) 102 FORMAT(1X,d14.6,1X,d14.6) ! The adjoint forcing is S_{obs}^{-1} * DIFF = FORCE DIFF_ADJ(:) = FORCE(:) !print*, ' FORCE with 1 for sensitivity ' !print*, ' FORCE with 1 for sensitivity ' !print*, ' FORCE with 1 for sensitivity ' !print*, ' FORCE with 1 for sensitivity ' !ADJ_DIFF(:) = 1d0 !NEW_COST(NT) = ?? SUM(ABS(LOG(O3_HAT(1:LGOS)))) !print*, ' sumlog =', SUM(ABS(LOG(O3_HAT(:)))) !print*, ' sumlog =', ABS(LOG(O3_HAT(:))) ! Adjoint of difference DO L = 1, LGOS CO2_HAT_ADJ(L) = DIFF_ADJ(L) ENDDO ! adjoint of TES operator DO L = 1, LGOS CO2_PERT_ADJ(L) = 0d0 DO LL = 1, LGOS CO2_PERT_ADJ(L) = CO2_PERT_ADJ(L) & + GOS(NT)%AVG_KERNEL(LL,L) & * CO2_HAT_ADJ(LL) ENDDO ENDDO ! Adjoint of x_m - x_a DO L = 1, LGOS ! fwd code: !CO2_PERT(L) = GC_CO2(L) - GOS(NT)%PRIOR(L) ! adj code: GC_CO2_ADJ(L) = CO2_PERT_ADJ(L) ENDDO ! dkh debug print*, 'CO2_HAT_ADJ, CO2_PERT_ADJ, GC_CO2_ADJ' WRITE(6,103) (CO2_HAT_ADJ(L), CO2_PERT_ADJ(L), GC_CO2_ADJ(L), & L = LGOS, 1, -1 ) 103 FORMAT(1X,d14.6,1X,d14.6,1X,d14.6) ! adjoint of interpolation DO L = 1, LLPAR GC_CO2_NATIVE_ADJ(L) = 0d0 DO LL = 1, LGOS GC_CO2_NATIVE_ADJ(L) = GC_CO2_NATIVE_ADJ(L) & + MAP(L,LL) * GC_CO2_ADJ(LL) ENDDO ENDDO WRITE(114,112) ( GC_CO2_NATIVE_ADJ(L), L=LLPAR,1,-1) ! Adjoint of unit conversion GC_CO2_NATIVE_ADJ(:) = GC_CO2_NATIVE_ADJ(:) * TCVV_CO2 & / AD(I,J,:) ! Pass adjoint back to adjoint tracer array STT_ADJ(I,J,:,IDTCO2) = STT_ADJ(I,J,:,IDTCO2) & + GC_CO2_NATIVE_ADJ(:) ! dkh debug print*, 'GC_CO2_NATIVE_ADJ conv ' WRITE(6,104) (GC_CO2_NATIVE_ADJ(L), L = LLPAR, 1, -1 ) 104 FORMAT(1X,d14.6) WRITE(101,110) ( GOS(NT)%PRES(LL), LL=LGOS,1,-1) WRITE(102,110) ( 1d6 * GC_CO2(LL), LL=LGOS,1,-1) WRITE(103,110) ( 1d6 * GOS(NT)%CO2(LL), LL=LGOS,1,-1) WRITE(104,110) ( 1d6 * GOS(NT)%PRIOR(LL), LL=LGOS,1,-1) WRITE(105,110) ( DIFF(LL), LL=LGOS,1,-1) WRITE(106,112) ( FORCE(LL), LL=LGOS,1,-1) WRITE(107,111) NT, LGOS WRITE(108,112) ( CO2_PERT_ADJ(LL), LL=LGOS,1,-1) WRITE(109,112) ( GC_CO2_ADJ(LL), LL=LGOS,1,-1) WRITE(110,110) ( 1d6 * CO2_HAT(LL), LL=LGOS,1,-1) WRITE(111,110) ( GC_PRES(L), L=LLPAR,1,-1) WRITE(112,110) ( 1d6 * GC_CO2_NATIVE(L), L=LLPAR,1,-1) WRITE(113,110) ( 1d6 * GC_CO2(LL), LL=LGOS,1,-1) 110 FORMAT(F18.6,1X) 111 FORMAT(i4,1X,i4,1x) 112 FORMAT(D14.6,1X) ENDDO ! NT !!$OMP END PARALLEL DO ! Update cost function COST_FUNC = COST_FUNC + SUM(NEW_COST(NTSTOP:NTSTART)) IF ( FIRST ) FIRST = .FALSE. print*, ' Updated value of COST_FUNC = ', COST_FUNC print*, ' GOS contribution = ', COST_FUNC - OLD_COST ! Return to calling program END SUBROUTINE CALC_GOS_CO2_FORCE !!------------------------------------------------------------------------------ ! ! SUBROUTINE CALC_TES_O3_FORCE_FD( COST_FUNC, PERT, ADJ ) !! !!****************************************************************************** !! Subroutine CALC_TES_O3_FORCE_FD tests the adjoint of CALC_TES_O3_FORCE !! (dkh, 05/05/10) !! !! Can be driven with: !! PERT(:) = 1D0 !! CALL CALC_TES_O3_FORCE_FD( COST_FUNC_0, PERT, ADJ ) !! ADJ_SAVE(:) = ADJ(:) !! print*, 'do3: COST_FUNC_0 = ', COST_FUNC_0 !! DO L = 1, 30 !! PERT(:) = 1D0 !! PERT(L) = 1.1 !! COST_FUNC = 0D0 !! CALL CALC_TES_O3_FORCE_FD( COST_FUNC_1, PERT, ADJ ) !! PERT(L) = 0.9 !! COST_FUNC = 0D0 !! CALL CALC_TES_O3_FORCE_FD( COST_FUNC_2, PERT, ADJ ) !! FD(L) = ( COST_FUNC_1 - COST_FUNC_2 ) / 0.2d0 !! print*, 'do3: FD = ', FD(L), L !! print*, 'do3: ADJ = ', ADJ_SAVE(L), L !! print*, 'do3: COST = ', COST_FUNC, L !! print*, 'do3: FD / ADJ ', FD(L) / ADJ_SAVE(L) , L !! ENDDO !! !! !! !! !! Arguments as Input/Output: !! ============================================================================ !! (1 ) COST_FUNC (REAL*8) : Cost funciton [unitless] !! !! !! NOTES: !! (1 ) Updated to GCv8 (dkh, 10/07/09) !! (1 ) Add more diagnostics. Now read and write doubled O3 (dkh, 11/08/09) !!****************************************************************************** !! ! ! Reference to f90 modules ! USE ADJ_ARRAYS_MOD, ONLY : STT_ADJ ! USE ADJ_ARRAYS_MOD, ONLY : N_CALC ! USE ADJ_ARRAYS_MOD, ONLY : EXPAND_NAME ! USE ADJ_ARRAYS_MOD, ONLY : O3_PROF_SAV ! USE CHECKPT_MOD, ONLY : CHK_STT ! USE COMODE_MOD, ONLY : CSPEC, JLOP ! USE COMODE_MOD, ONLY : CSPEC_ADJ_FORCE ! USE DAO_MOD, ONLY : AD ! USE DAO_MOD, ONLY : AIRDEN ! USE DAO_MOD, ONLY : BXHEIGHT ! USE DIRECTORY_ADJ_MOD, ONLY : DIAGADJ_DIR ! USE GRID_MOD, ONLY : GET_IJ ! USE PRESSURE_MOD, ONLY : GET_PCENTER, GET_PEDGE ! USE TIME_MOD, ONLY : GET_NYMD, GET_NHMS ! USE TIME_MOD, ONLY : GET_TS_CHEM ! USE TRACER_MOD, ONLY : XNUMOLAIR ! USE TRACERID_MOD, ONLY : IDO3 ! USE TROPOPAUSE_MOD, ONLY : ITS_IN_THE_TROP ! ! !# include "CMN_SIZE" ! Size params ! ! ! Arguments ! REAL*8, INTENT(INOUT) :: COST_FUNC ! ! REAL*8, INTENT(IN) :: PERT(LLPAR) ! REAL*8, INTENT(OUT) :: ADJ(LLPAR) ! ! ! Local variables ! INTEGER :: NTSTART, NTSTOP, NT ! INTEGER :: IIJJ(2), I, J ! INTEGER :: L, LL, LGOS ! INTEGER :: JLOOP ! REAL*8 :: GC_PRES(LLPAR) ! REAL*8 :: GC_O3_NATIVE(LLPAR) ! REAL*8 :: GC_O3(MAXLEV) ! REAL*8 :: GC_PSURF ! REAL*8 :: MAP(LLPAR,MAXLEV) ! REAL*8 :: O3_HAT(MAXLEV) ! REAL*8 :: O3_PERT(MAXLEV) ! REAL*8 :: FORCE(MAXLEV) ! REAL*8 :: DIFF(MAXLEV) ! REAL*8 :: NEW_COST(MAXTES) ! REAL*8 :: OLD_COST ! REAL*8, SAVE :: TIME_FRAC(MAXTES) ! INTEGER,SAVE :: NTES ! ! REAL*8 :: GC_O3_NATIVE_ADJ(LLPAR) ! REAL*8 :: CO2_HAT_ADJ(MAXLEV) ! REAL*8 :: O3_PERT_ADJ(MAXLEV) ! REAL*8 :: GC_O3_ADJ(MAXLEV) ! REAL*8 :: DIFF_ADJ(MAXLEV) ! ! LOGICAL, SAVE :: FIRST = .TRUE. ! INTEGER :: IOS ! CHARACTER(LEN=255) :: FILENAME ! ! ! ! !================================================================= ! ! CALC_TES_O3_FORCE_FD begins here! ! !================================================================= ! ! print*, ' - CALC_TES_O3_FORCE_FD ' ! ! NEW_COST = 0D0 ! ! ! Open files for output ! IF ( FIRST ) THEN ! FILENAME = 'pres.NN.m' ! CALL EXPAND_NAME( FILENAME, N_CALC ) ! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) ! OPEN( 101, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', ! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) ! ! FILENAME = 'gc_o3.NN.m' ! CALL EXPAND_NAME( FILENAME, N_CALC ) ! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) ! OPEN( 102, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', ! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) ! ! FILENAME = 'tes_o3.NN.m' ! CALL EXPAND_NAME( FILENAME, N_CALC ) ! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) ! OPEN( 103, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', ! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) ! ! FILENAME = 'apriori.NN.m' ! CALL EXPAND_NAME( FILENAME, N_CALC ) ! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) ! OPEN( 104, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', ! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) ! ! FILENAME = 'diff.NN.m' ! CALL EXPAND_NAME( FILENAME, N_CALC ) ! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) ! OPEN( 105, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', ! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) ! ! FILENAME = 'force.NN.m' ! CALL EXPAND_NAME( FILENAME, N_CALC ) ! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) ! OPEN( 106, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', ! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) ! ! FILENAME = 'nt_ll.NN.m' ! CALL EXPAND_NAME( FILENAME, N_CALC ) ! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) ! OPEN( 107, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', ! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) ! ! FILENAME = 'o3_pert_adj.NN.m' ! CALL EXPAND_NAME( FILENAME, N_CALC ) ! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) ! OPEN( 108, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', ! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) ! ! FILENAME = 'gc_o3_adj.NN.m' ! CALL EXPAND_NAME( FILENAME, N_CALC ) ! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) ! OPEN( 109, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', ! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) ! ! FILENAME = 'exp_o3_hat.NN.m' ! CALL EXPAND_NAME( FILENAME, N_CALC ) ! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) ! OPEN( 110, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', ! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) ! ! FILENAME = 'gc_press.NN.m' ! CALL EXPAND_NAME( FILENAME, N_CALC ) ! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) ! OPEN( 111, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', ! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) ! ! FILENAME = 'gc_o3_native.NN.m' ! CALL EXPAND_NAME( FILENAME, N_CALC ) ! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) ! OPEN( 112, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', ! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) ! ! FILENAME = 'gc_o3_on_tes.NN.m' ! CALL EXPAND_NAME( FILENAME, N_CALC ) ! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) ! OPEN( 113, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', ! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) ! ! FILENAME = 'gc_o3_native_adj.NN.m' ! CALL EXPAND_NAME( FILENAME, N_CALC ) ! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME ) ! OPEN( 114, FILE=TRIM( FILENAME ), STATUS='UNKNOWN', ! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' ) ! ! ! ENDIF ! ! ! Save a value of the cost function first ! OLD_COST = COST_FUNC ! ! ! Check if it is the last hour of a day !! IF ( GET_NHMS() == 236000 - GET_TS_CHEM() * 100 ) THEN ! IF ( FIRST ) THEN ! ! ! Read the TES O3 file for this day ! CALL READ_TES_O3_OBS( GET_NYMD(), NTES ) ! ! ! TIME is YYYYMMDD.frac-of-day. Subtract date and save just time fraction ! TIME_FRAC(1:NTES) = TES(1:NTES)%TIME(1) - GET_NYMD() ! ! FIRST = .FALSE. ! ENDIF ! !! ! Get the range of TES retrievals for the current hour !! CALL GET_NT_RANGE( NTES, GET_NHMS(), TIME_FRAC, NTSTART, NTSTOP ) !! !! IF ( NTSTART == 0 .and. NTSTOP == 0 ) THEN !! !! print*, ' No matching TES O3 obs for this hour' !! RETURN !! ENDIF !! !! print*, ' for hour range: ', GET_NHMS(), TIME_FRAC(NTSTART), !! & TIME_FRAC(NTSTOP) !! print*, ' found record range: ', NTSTART, NTSTOP ! ! NTSTART = 1590 ! NTSTOP = 1590 ! !! need to update this in order to do i/o with this loop parallel !!! ! Now do a parallel loop for analyzing data !!!$OMP PARALLEL DO !!!$OMP+DEFAULT( SHARED ) !!!$OMP+PRIVATE( NT, MAP, LGOS, IIJJ, I, J, L, LL, JLOOP ) !!!$OMP+PRIVATE( GC_PRES, GC_PSURF, GC_O3, DIFF ) !!!$OMP+PRIVATE( GC_O3_NATIVE, O3_PERT, O3_HAT, FORCE ) !!!$OMP+PRIVATE( GC_O3_NATIVE_ADJ, GC_O3_ADJ ) !!!$OMP+PRIVATE( O3_PERT_ADJ, CO2_HAT_ADJ ) !!!$OMP+PRIVATE( DIFF_ADJ ) ! DO NT = NTSTART, NTSTOP, -1 ! ! print*, ' - CALC_TES_O3_FORCE: analyzing record ', NT ! ! ! For safety, initialize these up to LLGOS ! GC_O3(:) = 0d0 ! MAP(:,:) = 0d0 ! CO2_HAT_ADJ(:) = 0d0 ! FORCE(:) = 0d0 ! ! ! ! Copy LGOS to make coding a bit cleaner ! LGOS = TES(NT)%LGOS(1) ! ! ! Get grid box of current record ! IIJJ = GET_IJ( REAL(TES(NT)%LON(1),4), REAL(TES(NT)%LAT(1),4)) ! I = IIJJ(1) ! J = IIJJ(2) ! ! print*, 'I,J = ', I, J ! ! ! Get GC pressure levels (mbar) ! DO L = 1, LLPAR ! GC_PRES(L) = GET_PCENTER(I,J,L) ! ENDDO ! ! ! Get GC surface pressure (mbar) ! GC_PSURF = GET_PEDGE(I,J,1) ! ! ! ! Calculate the interpolation weight matrix ! MAP(1:LLPAR,1:LGOS) ! & = GET_INTMAP( LLPAR, GC_PRES(:), GC_PSURF, ! & LGOS, TES(NT)%PRES(1:LGOS), GC_PSURF ) ! ! ! ! Get O3 values at native model resolution ! DO L = 1, LLPAR ! ! ! ! check if in trop ! IF ( ITS_IN_THE_TROP(I,J,L) ) THEN ! ! JLOOP = JLOP(I,J,L) ! ! ! get O3 from tropospheric array ! IF ( JLOOP > 0 ) THEN ! GC_O3_NATIVE(L) = CSPEC(JLOOP,IDO3) * PERT(L) ! ! ELSE ! ! ! get O3 from climatology [#/cm2] ! GC_O3_NATIVE(L) = O3_PROF_SAV(I,J,L) / ! & ( BXHEIGHT(I,J,L) * 100d0 ) ! !GC_O3_NATIVE(L) = 1d0 ! ENDIF ! ! ELSE ! ! ! get O3 from climatology [#/cm2] ! GC_O3_NATIVE(L) = O3_PROF_SAV(I,J,L) / ! & ( BXHEIGHT(I,J,L) * 100d0 ) ! !GC_O3_NATIVE(L) = 1d0 ! ! ENDIF ! ! ! Convert from #/cm3 to v/v ! GC_O3_NATIVE(L) = GC_O3_NATIVE(L) * 1d6 / ! & ( AIRDEN(L,I,J) * XNUMOLAIR ) ! ! ENDDO ! ! ! ! Interpolate GC O3 column to TES grid ! DO LL = 1, LGOS ! GC_O3(LL) = 0d0 ! DO L = 1, LLPAR ! GC_O3(LL) = GC_O3(LL) ! & + MAP(L,LL) * GC_O3_NATIVE(L) ! ENDDO ! ENDDO ! ! ! dkh debug: compare profiles: ! print*, ' GC_PRES, GC_native_O3 [ppb] ' ! WRITE(6,100) (GC_PRES(L), GC_O3_NATIVE(L)*1d9, ! & L = LLPAR, 1, -1 ) ! print*, ' TES_PRES, GC_O3 ' ! WRITE(6,100) (TES(NT)%PRES(LL), ! & GC_O3(LL)*1d9, LL = LGOS, 1, -1 ) ! 100 FORMAT(1X,F16.8,1X,F16.8) ! ! ! !-------------------------------------------------------------- ! ! Apply TES observation operator ! ! ! ! x_hat = x_a + A_k ( x_m - x_a ) ! ! ! ! where ! ! x_hat = GC modeled column as seen by TES [lnvmr] ! ! x_a = TES apriori column [lnvmr] ! ! x_m = GC modeled column [lnvmr] ! ! A_k = TES averaging kernel ! !-------------------------------------------------------------- ! ! ! x_m - x_a ! DO L = 1, LGOS ! GC_O3(L) = MAX(GC_O3(L), 1d-10) ! O3_PERT(L) = LOG(GC_O3(L)) - LOG(TES(NT)%PRIOR(L)) ! ENDDO ! ! ! x_a + A_k * ( x_m - x_a ) ! DO L = 1, LGOS ! O3_HAT(L) = 0d0 ! DO LL = 1, LGOS ! O3_HAT(L) = O3_HAT(L) ! & + TES(NT)%AVG_KERNEL(L,LL) * O3_PERT(LL) ! ENDDO ! O3_HAT(L) = O3_HAT(L) + LOG(TES(NT)%PRIOR(L)) ! ENDDO ! ! ! !-------------------------------------------------------------- ! ! Calculate cost function, given S is error on ln(vmr) ! ! J = 1/2 [ model - obs ]^T S_{obs}^{-1} [ ln(model - obs ] ! !-------------------------------------------------------------- ! ! ! Calculate difference between modeled and observed profile ! DO L = 1, LGOS ! IF ( TES(NT)%O3(L) > 0d0 ) THEN ! DIFF(L) = O3_HAT(L) - LOG( TES(NT)%O3(L) ) ! ELSE ! DIFF(L) = 0d0 ! ENDIF ! ENDDO ! ! ! Calculate 1/2 * DIFF^T * S_{obs}^{-1} * DIFF ! DO L = 1, LGOS ! FORCE(L) = 0d0 ! DO LL = 1, LGOS ! FORCE(L) = FORCE(L) + TES(NT)%S_OER_INV(L,LL) * DIFF(LL) ! ENDDO ! NEW_COST(NT) = NEW_COST(NT) + 0.5d0 * DIFF(L) * FORCE(L) ! ENDDO ! ! ! dkh debug: compare profiles: ! print*, ' TES_PRIOR, O3_HAT, O3_TES [ppb]' ! WRITE(6,090) ( 1d9 * TES(NT)%PRIOR(L), ! & 1d9 * EXP(O3_HAT(L)), ! & 1d9 * TES(NT)%O3(L), ! & L, L = LGOS, 1, -1 ) ! ! print*, ' TES_PRIOR, O3_HAT, O3_TES [lnvmr], diag(S^-1)' ! WRITE(6,101) ( LOG(TES(NT)%PRIOR(L)), O3_HAT(L), ! & LOG(TES(NT)%O3(L)), TES(NT)%S_OER_INV(L,L), ! & L, L = LGOS, 1, -1 ) ! 090 FORMAT(1X,F16.8,1X,F16.8,1X,F16.8,1X,i3) ! 101 FORMAT(1X,F16.8,1X,F16.8,1X,F16.8,1X,d14.6,1x,i3) ! ! !-------------------------------------------------------------- ! ! Begin adjoint calculations ! !-------------------------------------------------------------- ! ! ! dkh debug ! print*, 'DIFF , FORCE ' ! WRITE(6,102) (DIFF(L), FORCE(L), ! & L = LGOS, 1, -1 ) ! 102 FORMAT(1X,d14.6,1X,d14.6) ! ! ! The adjoint forcing is S_{obs}^{-1} * DIFF = FORCE ! DIFF_ADJ(:) = FORCE(:) ! ! !print*, ' FORCE with 1 for sensitivity ' ! !print*, ' FORCE with 1 for sensitivity ' ! !print*, ' FORCE with 1 for sensitivity ' ! !print*, ' FORCE with 1 for sensitivity ' ! !ADJ_DIFF(:) = 1d0 ! !NEW_COST(NT) = ?? SUM(ABS(LOG(O3_HAT(1:LGOS)))) ! !print*, ' sumlog =', SUM(ABS(LOG(O3_HAT(:)))) ! !print*, ' sumlog =', ABS(LOG(O3_HAT(:))) ! ! ! Adjoint of difference ! DO L = 1, LGOS ! IF ( TES(NT)%O3(L) > 0d0 ) THEN ! CO2_HAT_ADJ(L) = DIFF_ADJ(L) ! ENDIF ! ENDDO ! ! ! adjoint of TES operator ! DO L = 1, LGOS ! O3_PERT_ADJ(L) = 0d0 ! DO LL = 1, LGOS ! O3_PERT_ADJ(L) = O3_PERT_ADJ(L) ! & + TES(NT)%AVG_KERNEL(LL,L) ! & * CO2_HAT_ADJ(LL) ! ENDDO ! ENDDO ! ! ! Adjoint of x_m - x_a ! DO L = 1, LGOS ! ! fwd code: ! !GC_O3(L) = MAX(GC_O3(L), 1d-10) ! !O3_PERT(L) = LOG(GC_O3(L)) - LOG(TES(NT)%PRIOR(L)) ! ! adj code: ! IF ( GC_O3(L) > 1d-10 ) THEN ! GC_O3_ADJ(L) = 1d0 / GC_O3(L) * O3_PERT_ADJ(L) ! ELSE ! GC_O3_ADJ(L) = 1d0 / 1d-10 * O3_PERT_ADJ(L) ! ENDIF ! ENDDO ! ! ! dkh debug ! print*, 'CO2_HAT_ADJ, O3_PERT_ADJ, GC_O3_ADJ' ! WRITE(6,103) (CO2_HAT_ADJ(L), O3_PERT_ADJ(L), GC_O3_ADJ(L), ! & L = LGOS, 1, -1 ) ! 103 FORMAT(1X,d14.6,1X,d14.6,1X,d14.6) ! ! ! adjoint of interpolation ! DO L = 1, LLPAR ! GC_O3_NATIVE_ADJ(L) = 0d0 ! DO LL = 1, LGOS ! GC_O3_NATIVE_ADJ(L) = GC_O3_NATIVE_ADJ(L) ! & + MAP(L,LL) * GC_O3_ADJ(LL) ! ENDDO ! ENDDO ! ! WRITE(114,112) ( GC_O3_NATIVE_ADJ(L), L=LLPAR,1,-1) ! ! DO L = 1, LLPAR ! ! ! Adjoint of unit conversion ! GC_O3_NATIVE_ADJ(L) = GC_O3_NATIVE_ADJ(L) * 1d6 / ! & ( AIRDEN(L,I,J) * XNUMOLAIR ) ! ! ! IF ( ITS_IN_THE_TROP(I,J,L) ) THEN ! ! JLOOP = JLOP(I,J,L) ! ! IF ( JLOOP > 0 ) THEN ! ! ! Pass adjoint back to adjoint tracer array ! CSPEC_ADJ_FORCE(JLOOP,IDO3) = ! & CSPEC_ADJ_FORCE(JLOOP,IDO3) + GC_O3_NATIVE_ADJ(L) ! ! ADJ(L) = GC_O3_NATIVE_ADJ(L) * CSPEC(JLOOP,IDO3) ! ! ENDIF ! ! ENDIF ! ! ENDDO ! ! ! dkh debug ! print*, 'GC_O3_NATIVE_ADJ conv ' ! WRITE(6,104) (GC_O3_NATIVE_ADJ(L), L = LLPAR, 1, -1 ) ! 104 FORMAT(1X,d14.6) ! ! ! WRITE(101,110) ( TES(NT)%PRES(LL), LL=LGOS,1,-1) ! WRITE(102,110) ( 1d9 * GC_O3(LL), LL=LGOS,1,-1) ! WRITE(103,110) ( 1d9 * TES(NT)%O3(LL), LL=LGOS,1,-1) ! WRITE(104,110) ( 1d9 * TES(NT)%PRIOR(LL), LL=LGOS,1,-1) ! WRITE(105,110) ( DIFF(LL), LL=LGOS,1,-1) ! WRITE(106,112) ( FORCE(LL), LL=LGOS,1,-1) ! WRITE(107,111) NT, LGOS ! WRITE(108,112) ( O3_PERT_ADJ(LL), LL=LGOS,1,-1) ! WRITE(109,112) ( GC_O3_ADJ(LL), LL=LGOS,1,-1) ! WRITE(110,110) ( 1d9 * EXP(O3_HAT(LL)), LL=LGOS,1,-1) ! WRITE(111,110) ( GC_PRES(L), L=LLPAR,1,-1) ! WRITE(112,110) ( 1d9 * GC_O3_NATIVE(L), L=LLPAR,1,-1) ! WRITE(113,110) ( 1d9 * GC_O3(LL), LL=LGOS,1,-1) ! 110 FORMAT(F18.6,1X) ! 111 FORMAT(i4,1X,i4,1x) ! 112 FORMAT(D14.6,1X) ! ! ! ENDDO ! NT !!!$OMP END PARALLEL DO ! ! ! Update cost function ! COST_FUNC = SUM(NEW_COST(NTSTOP:NTSTART)) ! ! print*, ' Updated value of COST_FUNC = ', COST_FUNC ! print*, ' TES contribution = ', COST_FUNC - OLD_COST ! ! ! Return to calling program ! END SUBROUTINE CALC_TES_O3_FORCE_FD ! !!------------------------------------------------------------------------------ SUBROUTINE GET_NT_RANGE( NTES, HHMMSS, TIME_FRAC, NTSTART, NTSTOP) ! !****************************************************************************** ! Subroutine GET_NT_RANGE retuns the range of retrieval records for the ! current model hour ! ! ! Arguments as Input: ! ============================================================================ ! (1 ) NTES (INTEGER) : Number of TES retrievals in this day ! (2 ) HHMMSS (INTEGER) : Current model time ! (3 ) TIME_FRAC (REAL) : Vector of times (frac-of-day) for the TES retrievals ! ! Arguments as Output: ! ============================================================================ ! (1 ) NTSTART (INTEGER) : TES record number at which to start ! (1 ) NTSTOP (INTEGER) : TES record number at which to stop ! ! NOTES: ! !****************************************************************************** ! ! Reference to f90 modules USE ERROR_MOD, ONLY : ERROR_STOP USE TIME_MOD, ONLY : YMD_EXTRACT ! Arguments INTEGER, INTENT(IN) :: NTES INTEGER, INTENT(IN) :: HHMMSS REAL*8, INTENT(IN) :: TIME_FRAC(NTES) INTEGER, INTENT(OUT) :: NTSTART INTEGER, INTENT(OUT) :: NTSTOP ! Local variables INTEGER, SAVE :: NTSAVE LOGICAL :: FOUND_ALL_RECORDS INTEGER :: NTEST INTEGER :: HH, MM, SS REAL*8 :: GC_HH_FRAC REAL*8 :: H1_FRAC !================================================================= ! GET_NT_RANGE begins here! !================================================================= ! Initialize FOUND_ALL_RECORDS = .FALSE. NTSTART = 0 NTSTOP = 0 ! set NTSAVE to NTES every time we start with a new file IF ( HHMMSS == 230000 ) NTSAVE = NTES - 100 print*, ' co2 hack : skip lat 100 records, where out of order' print*, ' co2 hack : skip lat 100 records, where out of order' print*, ' co2 hack : skip lat 100 records, where out of order' print*, ' co2 hack : skip lat 100 records, where out of order' print*, ' co2 hack : skip lat 100 records, where out of order' print*, ' GET_NT_RANGE for ', HHMMSS print*, ' NTSAVE ', NTSAVE print*, ' NTES ', NTES CALL YMD_EXTRACT( HHMMSS, HH, MM, SS ) ! Convert HH from hour to fraction of day GC_HH_FRAC = REAL(HH,8) / 24d0 ! one hour as a fraction of day H1_FRAC = 1d0 / 24d0 ! dkh debug print*, ' co2 time frac = ', TIME_FRAC ! All records have been read already IF ( NTSAVE == 0 ) THEN print*, 'All records have been read already ' RETURN ! No records reached yet ELSEIF ( TIME_FRAC(NTSAVE) + H1_FRAC < GC_HH_FRAC ) THEN print*, 'No records reached yet' RETURN ! ELSEIF ( TIME_FRAC(NTSAVE) + H1_FRAC >= GC_HH_FRAC ) THEN ! Starting record found NTSTART = NTSAVE print*, ' Starting : TIME_FRAC(NTSTART) ', & TIME_FRAC(NTSTART), NTSTART ! Now search forward to find stopping record NTEST = NTSTART DO WHILE ( FOUND_ALL_RECORDS == .FALSE. ) ! Advance to the next record NTEST = NTEST - 1 ! Stop if we reach the earliest available record IF ( NTEST == 0 ) THEN NTSTOP = NTEST + 1 FOUND_ALL_RECORDS = .TRUE. print*, ' Records found ' print*, ' NTSTART, NTSTOP = ', NTSTART, NTSTOP ! Reset NTSAVE NTSAVE = NTEST ! When the combined test date rounded up to the nearest ! half hour is smaller than the current model date, the ! stopping record has been passed. ELSEIF ( TIME_FRAC(NTEST) + H1_FRAC < GC_HH_FRAC ) THEN print*, ' Testing : TIME_FRAC ', & TIME_FRAC(NTEST), NTEST NTSTOP = NTEST + 1 FOUND_ALL_RECORDS = .TRUE. print*, ' Records found ' print*, ' NTSTART, NTSTOP = ', NTSTART, NTSTOP ! Reset NTSAVE NTSAVE = NTEST ELSE print*, ' still looking ', NTEST ENDIF ENDDO ELSE CALL ERROR_STOP('problem', 'GET_NT_RANGE' ) ENDIF ! Return to calling program END SUBROUTINE GET_NT_RANGE !------------------------------------------------------------------------------ FUNCTION GET_INTMAP( LGC_TOP, GC_PRESC, GC_SURFP, & LTM_TOP, TM_PRESC, TM_SURFP ) * RESULT ( HINTERPZ ) ! !****************************************************************************** ! Function GET_INTMAP linearly interpolates column quatities ! based upon the centered (average) pressue levels. ! ! Arguments as Input: ! ============================================================================ ! (1 ) LGC_TOP (TYPE) : Description [unit] ! (2 ) GC_PRES (TYPE) : Description [unit] ! (3 ) GC_SURFP(TYPE) : Description [unit] ! (4 ) LTM_TOP (TYPE) : Description [unit] ! (5 ) TM_PRES (TYPE) : Description [unit] ! (6 ) TM_SURFP(TYPE) : Description [unit] ! ! Arguments as Output: ! ============================================================================ ! (1 ) HINTERPZ (TYPE) : Description [unit] ! ! NOTES: ! (1 ) Based on the GET_HINTERPZ_2 routine I wrote for read_sciano2_mod. ! !****************************************************************************** ! ! Reference to f90 modules USE ERROR_MOD, ONLY : ERROR_STOP USE PRESSURE_MOD, ONLY : GET_BP ! Arguments INTEGER :: LGC_TOP, LTM_TOP REAL*8 :: GC_PRESC(LGC_TOP) REAL*8 :: TM_PRESC(LTM_TOP) REAL*8 :: GC_SURFP REAL*8 :: TM_SURFP ! Return value REAL*8 :: HINTERPZ(LGC_TOP, LTM_TOP) ! Local variables INTEGER :: LGC, LTM REAL*8 :: DIFF, DELTA_SURFP REAL*8 :: LOW, HI !================================================================= ! GET_HINTERPZ_2 begins here! !================================================================= HINTERPZ(:,:) = 0D0 ! ! Rescale GC grid according to TM surface pressure !! p1_A = (a1 + b1 (ps_A - PTOP)) !! p2_A = (a2 + b2 (ps_A - PTOP)) !! p1_B = (a + b (ps_B - PTOP)) !! p2_B = *(a + b (ps_B - PTOP)) !! pc_A = 0.5(a1+a2 +(b1+b2)*(ps_A - PTOP)) !! pc_B = 0.5(a1+a2 +(b1+b2)*(ps_B - PTOP)) !! pc_B - pc_A = 0.5(b1_b2)(ps_B-ps_A) !! pc_B = 0.5(b1_b2)(ps_B-ps_A) + pc_A ! DELTA_SURFP = 0.5d0 * ( TM_SURFP -GC_SURFP ) ! ! DO LGC = 1, LGC_TOP ! GC_PRESC(LGC) = ( GET_BP(LGC) + GET_BP(LGC+1)) ! & * DELTA_SURFP + GC_PRESC(LGC) ! IF (GC_PRESC(LGC) < 0) THEN ! CALL ERROR_STOP( 'highly unlikey', ! & 'read_sciano2_mod.f') ! ENDIF ! ! ENDDO ! Loop over each pressure level of TM grid DO LTM = 1, LTM_TOP ! Find the levels from GC that bracket level LTM DO LGC = 1, LGC_TOP - 1 LOW = GC_PRESC(LGC+1) HI = GC_PRESC(LGC) IF (LGC == 0) HI = TM_SURFP ! Linearly interpolate value on the LTM grid IF ( TM_PRESC(LTM) <= HI .and. & TM_PRESC(LTM) > LOW) THEN DIFF = HI - LOW HINTERPZ(LGC+1,LTM) = ( HI - TM_PRESC(LTM) ) / DIFF HINTERPZ(LGC ,LTM) = ( TM_PRESC(LTM) - LOW ) / DIFF ENDIF ! dkh debug !print*, 'LGC,LTM,HINT', LGC, LTM, HINTERPZ(LGC,LTM) ENDDO ENDDO ! Bug fix: a more general version allows for multiples TES pressure ! levels to exist below the lowest GC pressure. (dm, dkh, 09/30/10) ! OLD code: !IF ( TM_PRESC(1) > GC_PRESC(1) ) THEN ! HINTERPZ(1,1) = 1D0 ! HINTERPZ(2:LGC_TOP,1) = 0D0 !ENDIF ! New code: ! Loop over each pressure level of TM grid DO LTM = 1, LTM_TOP IF ( TM_PRESC(LTM) > GC_PRESC(1) ) THEN HINTERPZ(1,LTM) = 1D0 HINTERPZ(2:LGC_TOP,LTM) = 0D0 ENDIF ENDDO ! Return to calling program END FUNCTION GET_INTMAP !!------------------------------------------------------------------------------ ! SUBROUTINE MAKE_O3_FILE( ) !! !!****************************************************************************** !! Subroutine MAKE_O3_FILE saves O3 profiles that correspond to time and !! place of TES O3 obs. (dkh, 03/01/09) !! !! Module variables as Input: !! ============================================================================ !! (1 ) O3_SAVE (REAL*8) : O3 profiles [ppmv] !! !! NOTES: !! !!****************************************************************************** !! ! ! Reference to f90 modules ! USE BPCH2_MOD ! USE DIRECTORY_ADJ_MOD, ONLY : ADJTMP_DIR ! USE ERROR_MOD, ONLY : ERROR_STOP ! USE GRID_MOD, ONLY : GET_XOFFSET, GET_YOFFSET ! USE TIME_MOD, ONLY : EXPAND_DATE ! !# include "CMN_SIZE" ! Size params ! ! ! Local variables ! INTEGER :: I, J, I0, J0, L, NT ! CHARACTER(LEN=120) :: FILENAME ! REAL*4 :: DAT(1,LLPAR,MAXTES) ! INTEGER, PARAMETER :: IUN = 88 ! ! ! For binary punch file, version 2.0 ! CHARACTER(LEN=20) :: MODELNAME ! CHARACTER(LEN=40) :: CATEGORY ! CHARACTER(LEN=40) :: UNIT ! CHARACTER(LEN=40) :: RESERVED = '' ! CHARACTER(LEN=80) :: TITLE ! REAL*4 :: LONRES, LATRES ! INTEGER, PARAMETER :: HALFPOLAR = 1 ! INTEGER, PARAMETER :: CENTER180 = 1 ! ! !================================================================= ! ! MAKE_O3_FILE begins here! ! !================================================================= ! ! FILENAME = TRIM( 'nh3.bpch' ) ! ! ! Append data directory prefix ! FILENAME = TRIM( ADJTMP_DIR ) // TRIM( FILENAME ) ! ! ! Define variables for BINARY PUNCH FILE OUTPUT ! TITLE = 'O3 profile ' ! CATEGORY = 'IJ-AVE-$' ! LONRES = DISIZE ! LATRES = DJSIZE ! UNIT = 'ppmv' ! ! ! Call GET_MODELNAME to return the proper model name for ! ! the given met data being used (bmy, 6/22/00) ! MODELNAME = GET_MODELNAME() ! ! ! Get the nested-grid offsets ! I0 = GET_XOFFSET( GLOBAL=.TRUE. ) ! J0 = GET_YOFFSET( GLOBAL=.TRUE. ) ! ! !================================================================= ! ! Open the checkpoint file for output -- binary punch format ! !================================================================= ! ! ! WRITE( 6, 100 ) TRIM( FILENAME ) ! 100 FORMAT( ' - MAKE_O3_FILE: Writing ', a ) ! ! ! Open checkpoint file for output ! CALL OPEN_BPCH2_FOR_WRITE( IUN, FILENAME, TITLE ) ! ! ! Temporarily store data in DAT as REAL4 !!$OMP PARALLEL DO !!$OMP+DEFAULT( SHARED ) !!$OMP+PRIVATE( NT ) ! DO NT = 1, MAXTES ! ! DAT(1,:,NT) = REAL(O3_SAVE(:,NT)) ! ! ENDDO !!$OMP END PARALLEL DO ! ! CALL BPCH2( IUN, MODELNAME, LONRES, LATRES, ! & HALFPOLAR, CENTER180, CATEGORY, 1, ! & UNIT, 1d0, 1d0, RESERVED, ! & 1, LLPAR, MAXTES, I0+1, ! & J0+1, 1, DAT ) ! ! ! Close file ! CLOSE( IUN ) ! ! print*, ' O3_SAVE sum write = ', SUM(O3_SAVE(:,:)) ! ! ! Return to calling program ! END SUBROUTINE MAKE_O3_FILE ! !!------------------------------------------------------------------------------ ! SUBROUTINE READ_O3_FILE( ) !! !!****************************************************************************** !! Subroutine READ_O3_FILE reads the GC modeled O3 profiles that correspond !! to the TES O3 times and locations. (dkh, 03/01/09) !! !! NOTES: !! !!****************************************************************************** !! ! ! Reference to F90 modules ! USE BPCH2_MOD, ONLY : READ_BPCH2 ! USE DIRECTORY_ADJ_MOD, ONLY : ADJTMP_DIR ! ! !# include "CMN_SIZE" ! Size parameters ! ! ! Local variables ! REAL*4 :: DAT(1,LLPAR,MAXTES) ! CHARACTER(LEN=255) :: FILENAME ! ! !================================================================= ! ! READ_USA_MASK begins here! ! !================================================================= ! ! ! File name ! FILENAME = TRIM( ADJTMP_DIR ) // ! & 'nh3.bpch' ! ! ! Echo info ! WRITE( 6, 100 ) TRIM( FILENAME ) ! 100 FORMAT( ' - READ_O3_FILE: Reading ', a ) ! ! ! ! USA mask is stored in the bpch file as #2 ! CALL READ_BPCH2( FILENAME, 'IJ-AVE-$', 1, ! & 1d0, 1, LLPAR, ! & MAXTES, DAT, QUIET=.TRUE. ) ! ! ! Cast to REAL*8 ! O3_SAVE(:,:) = DAT(1,:,:) ! ! print*, ' O3_SAVE sum read = ', SUM(O3_SAVE(:,:)) ! ! ! Return to calling program ! END SUBROUTINE READ_O3_FILE ! !!----------------------------------------------------------------------------- ! FUNCTION GET_DOUBLED_O3( NYMD, NHMS, LON, LAT ) RESULT( O3_DBL ) !! !!****************************************************************************** !! Subroutine GET_DOUBLED_O3 reads and returns the nh3 profiles from !! model run with doubled emissions. (dkh, 11/08/09) !! !! NOTES: !! !!****************************************************************************** !! ! ! Reference to F90 modules ! USE BPCH2_MOD, ONLY : READ_BPCH2 ! USE DIRECTORY_MOD, ONLY : DATA_DIR ! USE TIME_MOD, ONLY : EXPAND_DATE ! USE TIME_MOD, ONLY : GET_TAU ! ! !# include "CMN_SIZE" ! Size parameters ! ! ! Arguments ! INTEGER :: NYMD, NHMS ! REAL*4 :: LON, LAT ! ! ! Function arg ! REAL*8 :: O3_DBL(LLPAR) ! ! ! Local variables ! REAL*4 :: DAT(144,91,20) ! CHARACTER(LEN=255) :: FILENAME ! INTEGER :: IIJJ(2) ! ! !================================================================= ! ! GET_DOUBLED_O3 begins here! ! !================================================================= ! ! ! filename ! FILENAME = 'nh3.YYYYMMDD.hhmm' ! ! ! Expand filename ! CALL EXPAND_DATE( FILENAME, NYMD, NHMS ) ! ! ! Full path to file ! FILENAME = TRIM( DATA_DIR ) // ! & 'doubled_nh3/' // ! & TRIM( FILENAME ) // ! & TRIM( '00' ) ! ! ! Echo info ! WRITE( 6, 100 ) TRIM( FILENAME ) ! 100 FORMAT( ' - GET_DOUBLED_O3: Reading ', a ) ! ! ! dkh debug ! print*, ' GET_TAU() = ', GET_TAU() ! ! ! Get data ! CALL READ_BPCH2( FILENAME, 'IJ-AVG-$', 29, ! & GET_TAU(), 144, 91, ! & 20, DAT, QUIET=.FALSE. ) ! ! IIJJ = GET_IJ_2x25( LON, LAT ) ! ! print*, ' found doubled in I/J = ', IIJJ ! ! ! just the column for the present location, and convert ppb to ppm ! O3_DBL(1:20) = REAL(DAT(IIJJ(1),IIJJ(2),:),8) / 1000d0 ! O3_DBL(21:LLPAR) = 0d0 ! ! print*, ' O3_DBL = ', O3_DBL ! ! ! Return to calling program ! END FUNCTION GET_DOUBLED_O3 ! !!------------------------------------------------------------------------------ FUNCTION GET_IJ_2x25( LON, LAT ) RESULT ( IIJJ ) ! !****************************************************************************** ! Subroutine GET_IJ_2x25 returns I and J index from the 2 x 2.5 grid for a ! LON, LAT coord. (dkh, 11/08/09) ! ! ! Arguments as Input: ! ============================================================================ ! (1 ) LON (REAL*8) : Longitude [degrees] ! (2 ) LAT (REAL*8) : Latitude [degrees] ! ! Function result ! ============================================================================ ! (1 ) IIJJ(1) (INTEGER) : Long index [none] ! (2 ) IIJJ(2) (INTEGER) : Lati index [none] ! ! NOTES: ! !****************************************************************************** ! ! Reference to f90 modules USE ERROR_MOD, ONLY : ERROR_STOP ! Arguments REAL*4 :: LAT, LON ! Return INTEGER :: I, J, IIJJ(2) ! Local variables REAL*8 :: TLON, TLAT, DLON, DLAT REAL*8, PARAMETER :: DISIZE = 2.5d0 REAL*8, PARAMETER :: DJSIZE = 2.0d0 INTEGER, PARAMETER :: IIMAX = 144 INTEGER, PARAMETER :: JJMAX = 91 !================================================================= ! GET_IJ_2x25 begins here! !================================================================= TLON = 180d0 + LON + DISIZE TLAT = 90d0 + LAT + DJSIZE I = TLON / DISIZE J = TLAT / DJSIZE IF ( TLON / DISIZE - REAL(I) >= 0.5d0 ) THEN I = I + 1 ENDIF IF ( TLAT / DJSIZE - REAL(J) >= 0.5d0 ) THEN J = J + 1 ENDIF ! Longitude wraps around !IF ( I == 73 ) I = 1 IF ( I == ( IIMAX + 1 ) ) I = 1 ! Check for impossible values IF ( I > IIMAX .or. J > JJMAX .or. & I < 1 .or. J < 1 ) THEN CALL ERROR_STOP('Error finding grid box', 'GET_IJ_2x25') ENDIF IIJJ(1) = I IIJJ(2) = J ! Return to calling program END FUNCTION GET_IJ_2x25 !------------------------------------------------------------------------------ SUBROUTINE SVD(A,N,U,S,VT) ! !****************************************************************************** ! Subroutine SVD is a driver for the LAPACK SVD routine DGESVD. (dkh, 05/04/10) ! ! ! Arguments as Input: ! ============================================================================ ! (1 ) A (REAL*8) : N x N matrix to decompose ! (2 ) N (INTEGER) : N is dimension of A ! ! Arguments as Output: ! ============================================================================ ! (1 ) U (REAL*8) : Array of left singular vectors ! (2 ) S (REAL*8) : Vector of singular values ! (3 ) VT (REAL*8) : Array of right singular vectors, TRANSPOSED ! ! ! NOTES: ! * Copyright (C) 2009-2010 Intel Corporation. All Rights Reserved. * The information and material ("Material") provided below is owned by Intel * Corporation or its suppliers or licensors, and title to such Material remains * with Intel Corporation or its suppliers or licensors. The Material contains * proprietary information of Intel or its suppliers and licensors. The Material * is protected by worldwide copyright laws and treaty provisions. No part of * the Material may be copied, reproduced, published, uploaded, posted, * transmitted, or distributed in any way without Intel's prior express written * permission. No license under any patent, copyright or other intellectual * property rights in the Material is granted to or conferred upon you, either * expressly, by implication, inducement, estoppel or otherwise. Any license * under such intellectual property rights must be express and approved by Intel * in writing. * ============================================================================= * * DGESVD Example. * ============== * * Program computes the singular value decomposition of a general * rectangular matrix A: * * 8.79 9.93 9.83 5.45 3.16 * 6.11 6.91 5.04 -0.27 7.98 * -9.15 -7.93 4.86 4.85 3.01 * 9.57 1.64 8.83 0.74 5.80 * -3.49 4.02 9.80 10.00 4.27 * 9.84 0.15 -8.99 -6.02 -5.31 * * Description. * ============ * * The routine computes the singular value decomposition (SVD) of a real * m-by-n matrix A, optionally computing the left and/or right singular * vectors. The SVD is written as * * A = U*SIGMA*VT * * where SIGMA is an m-by-n matrix which is zero except for its min(m,n) * diagonal elements, U is an m-by-m orthogonal matrix and VT (V transposed) * is an n-by-n orthogonal matrix. The diagonal elements of SIGMA * are the singular values of A; they are real and non-negative, and are * returned in descending order. The first min(m, n) columns of U and V are * the left and right singular vectors of A. * * Note that the routine returns VT, not V. * * Example Program Results. * ======================== * * DGESVD Example Program Results * * Singular values * 27.47 22.64 8.56 5.99 2.01 * * Left singular vectors (stored columnwise) * -0.59 0.26 0.36 0.31 0.23 * -0.40 0.24 -0.22 -0.75 -0.36 * -0.03 -0.60 -0.45 0.23 -0.31 * -0.43 0.24 -0.69 0.33 0.16 * -0.47 -0.35 0.39 0.16 -0.52 * 0.29 0.58 -0.02 0.38 -0.65 * * Right singular vectors (stored rowwise) * -0.25 -0.40 -0.69 -0.37 -0.41 * 0.81 0.36 -0.25 -0.37 -0.10 * -0.26 0.70 -0.22 0.39 -0.49 * 0.40 -0.45 0.25 0.43 -0.62 * -0.22 0.14 0.59 -0.63 -0.44 * ============================================================================= !****************************************************************************** ! ! Arguements INTEGER,INTENT(IN) :: N REAL*8, INTENT(IN) :: A(N,N) REAL*8, INTENT(OUT) :: U(N,N) REAL*8, INTENT(OUT) :: S(N) REAL*8, INTENT(OUT) :: VT(N,N) ! Local variables INTEGER, PARAMETER :: LWMAX = MAXLEV * 35 INTEGER :: INFO, LWORK DOUBLE PRECISION :: WORK( LWMAX ) * .. External Subroutines .. EXTERNAL :: DGESVD * .. Intrinsic Functions .. INTRINSIC :: INT, MIN !================================================================= ! SVD begins here! !================================================================= * .. Executable Statements .. !WRITE(*,*)'DGESVD Example Program Results' * * Query the optimal workspace. * print*, ' here 1 ' LWORK = -1 CALL DGESVD( 'All', 'All', N, N, A, N, S, U, N, VT, N, $ WORK, LWORK, INFO ) LWORK = MIN( LWMAX, INT( WORK( 1 ) ) ) * * Compute SVD. * print*, ' here 2 ' CALL DGESVD( 'All', 'All', N, N, A, N, S, U, N, VT, N, $ WORK, LWORK, INFO ) * * Check for convergence. * print*, ' here 3 ' IF( INFO.GT.0 ) THEN WRITE(*,*)'The algorithm computing SVD failed to converge.' STOP END IF ! Uncomment the following to print out singlular values, vectors (dkh, 05/04/10) ! ! Print singular values. ! CALL PRINT_MATRIX( 'Singular values', 1, N, S, 1 ) ! ! Print left singular vectors. ! CALL PRINT_MATRIX( 'Left singular vectors (stored columnwise)', $ N, N, U, N ) ! ! Print right singular vectors. ! CALL PRINT_MATRIX( 'Right singular vectors (stored rowwise)', $ N, N, VT, N ) ! Return to calling program END SUBROUTINE SVD !------------------------------------------------------------------------------ SUBROUTINE DGESVD_EXAMPLE * .. Parameters .. INTEGER M, N PARAMETER ( M = 6, N = 5 ) INTEGER LDA, LDU, LDVT PARAMETER ( LDA = M, LDU = M, LDVT = N ) INTEGER LWMAX PARAMETER ( LWMAX = 1000 ) * * .. Local Scalars .. INTEGER INFO, LWORK * * .. Local Arrays .. DOUBLE PRECISION A( LDA, N ), U( LDU, M ), VT( LDVT, N ), S( N ), $ WORK( LWMAX ) DATA A/ $ 8.79, 6.11,-9.15, 9.57,-3.49, 9.84, $ 9.93, 6.91,-7.93, 1.64, 4.02, 0.15, $ 9.83, 5.04, 4.86, 8.83, 9.80,-8.99, $ 5.45,-0.27, 4.85, 0.74,10.00,-6.02, $ 3.16, 7.98, 3.01, 5.80, 4.27,-5.31 $ / * * .. External Subroutines .. EXTERNAL DGESVD !EXTERNAL PRINT_MATRIX * * .. Intrinsic Functions .. INTRINSIC INT, MIN * * .. Executable Statements .. WRITE(*,*)'DGESVD Example Program Results' * * Query the optimal workspace. * LWORK = -1 CALL DGESVD( 'All', 'All', M, N, A, LDA, S, U, LDU, VT, LDVT, $ WORK, LWORK, INFO ) LWORK = MIN( LWMAX, INT( WORK( 1 ) ) ) * * Compute SVD. * CALL DGESVD( 'All', 'All', M, N, A, LDA, S, U, LDU, VT, LDVT, $ WORK, LWORK, INFO ) * * Check for convergence. * IF( INFO.GT.0 ) THEN WRITE(*,*)'The algorithm computing SVD failed to converge.' STOP END IF * * Print singular values. * CALL PRINT_MATRIX( 'Singular values', 1, N, S, 1 ) * * Print left singular vectors. * CALL PRINT_MATRIX( 'Left singular vectors (stored columnwise)', $ M, N, U, LDU ) * * Print right singular vectors. * CALL PRINT_MATRIX( 'Right singular vectors (stored rowwise)', $ N, N, VT, LDVT ) * * End of DGESVD Example. END SUBROUTINE DGESVD_EXAMPLE !------------------------------------------------------------------------------ * * Auxiliary routine: printing a matrix. * SUBROUTINE PRINT_MATRIX( DESC, M, N, A, LDA ) CHARACTER*(*) DESC INTEGER M, N, LDA DOUBLE PRECISION A( LDA, * ) * INTEGER I, J * WRITE(*,*) WRITE(*,*) DESC DO I = 1, M WRITE(*,9998) ( A( I, J ), J = 1, N ) END DO * ! Change format of output (dkh, 05/04/10) ! 9998 FORMAT( 11(:,1X,F6.2) ) 9998 FORMAT( 11(:,1X,E14.8) ) RETURN END SUBROUTINE PRINT_MATRIX !------------------------------------------------------------------------------ END MODULE GOSAT_CO2_MOD