Files
2018-08-28 00:43:47 -04:00

208 lines
8.9 KiB
Fortran

! $Id: decomp.f,v 1.1 2009/06/09 21:51:53 daven Exp $
SUBROUTINE DECOMP
!
!******************************************************************************
! Subroutine DECOMP decomposes the sparse matrix for the SMVGEAR II solver.
! (M. Jacobson, 1997; bdf, bmy, 4/18/03)
!
! NOTES:
! (1 ) Now use & as F90 continuation character. Now also force double
! precision with the "D" exponent. (bmy, 4/18/03)
! (2 ) Comment out counter variable NUM_BACKSUB, you can get the same info
! w/ a profiling run. (bmy, 7/9/03)
!******************************************************************************
!
IMPLICIT NONE
# include "CMN_SIZE"
# include "comode.h"
C
C *********************************************************************
C ************ WRITTEN BY MARK JACOBSON (1993) ************
C *** (C) COPYRIGHT, 1993 BY MARK Z. JACOBSON ***
C *** U.S. COPYRIGHT OFFICE REGISTRATION NO. TXu 670-279 ***
C *** (650) 723-6836 ***
C *********************************************************************
C
C DDDDDDD EEEEEEE CCCCCCC OOOOOOO M M PPPPPPP
C D D E C O O MM MM P P
C D D EEEEEEE C O O M M M M PPPPPPP
C D D E C O O M M M P
C DDDDDDD EEEEEEE CCCCCCC OOOOOOO M M P
C
C *********************************************************************
C ************** DECOMPOSE THE SPARSE MATRIX **************************
C *********************************************************************
C
C *********************************************************************
C * THIS SUBROUTINE DECOMPOSES THE MATRIX "P" INTO THE MATRIX "A" IN *
C * ORDER TO SOLVE THE LINEAR SET OF EQUATIONS Ax = B FOR x, WHICH IS *
C * A CORRECTION VECTOR. Ax = B IS SOLVED IN SUBROUTINE BACKSUB.F *
C * ABOVE, THE ORIGINAL MATRIX "P" IS *
C * *
C * P = I - H x Bo x J, *
C * *
C * WHERE I = IDENTITY MATRIX, H = TIME-STEP, Bo = A COEFFICIENT THAT *
C * DEPENDS ON THE ORDER OF THE INTEGRATION METHOD, AND J IS THE *
C * MATRIX OF PARTIAL DERIVATIVES. SEE PRESS ET AL. (1992) NUMERICAL *
C * RECIPES CAMBRIDGE UNIVERSITY PRESS, FOR A BETTER DESCRIPTION OF *
C * THE L-U DECOMPOSTION PROCESS *
C * *
C * THIS L-U DECOMPOSTION PROCESS USES SPARSE-MATRIX TECHNIQUES, *
C * VECTORIZES AROUND THE GRID-CELL DIMENSION, AND USES NO PARTIAL *
C * PIVOTING. TESTS BY SHERMAN & HINDMARSH (1980) LAWRENCE LIVERMORE *
C * REP. UCRL-84102 AND BY US HAVE CONFIRMED THAT THE REMOVAL OF *
C * PARTIAL PIVOTING HAS LITTLE EFFECT ON RESULTS. *
C * *
C * HOW TO CALL SUBROUTINE: *
C * ---------------------- *
C * CALL DECOMP.F FROM SMVGEAR.F WITH *
C * NCS = 1..NCSGAS FOR GAS CHEMISTRY *
C * NCSP = NCS FOR DAYTIME GAS CHEM *
C * NCSP = NCS +ICS FOR NIGHTTIME GAS CHEM *
C *********************************************************************
C
C KTLOOP = NUMBER OF GRID-CELLS IN A GRID-BLOCK
C ISCHAN = ORIGINAL ORDER OF MATRIX
C CC2 = ARRAY OF IARRAY UNITS HOLDING VALUES OF EACH MATRIX
C POSITION ACTUALLY USED. ORIGINALLY,
C CC2 = P = I - DELT * ASET(NQQ,1) * PARTIAL DERIVATIVES.
C HOWEVER, CC2 IS DECOMPOSED HERE
C
C *********************************************************************
C *** FIRST LOOP OF L-U DECOMPOSTION ***
C *********************************************************************
C SUM 1,2,3,4, OR 5 TERMS AT A TIME TO IMPROVE VECTORIZATION
C
INTEGER J,IJT,IJ,IL5,IH5,IL4,IH4,IL3,IH3,IL2,IH2,IL1,IH1
INTEGER IC,IK0,IK1,IK2,IK3,IK4,KJ0,KJ1,KJ2,KJ3,KJ4,K,IAR
INTEGER JL,JH,JC,IJA
DO 510 J = 1, ISCHAN
DO 310 IJT = IJTLO(J,NCSP), IJTHI(J,NCSP)
IJ = IJVAL(IJT)
IL5 = IDL5( IJT)
IH5 = IDH5( IJT)
IL4 = IDL4( IJT)
IH4 = IDH4( IJT)
IL3 = IDL3( IJT)
IH3 = IDH3( IJT)
IL2 = IDL2( IJT)
IH2 = IDH2( IJT)
IL1 = IDL1( IJT)
IH1 = IDH1( IJT)
C ********************* SUM 5 TERMS AT A TIME *************************
C
DO 105 IC = IL5, IH5
IK0 = IKDECA(IC)
IK1 = IKDECB(IC)
IK2 = IKDECC(IC)
IK3 = IKDECD(IC)
IK4 = IKDECE(IC)
KJ0 = KJDECA(IC)
KJ1 = KJDECB(IC)
KJ2 = KJDECC(IC)
KJ3 = KJDECD(IC)
KJ4 = KJDECE(IC)
DO 100 K = 1, KTLOOP
CC2(K,IJ) = CC2(K,IJ) - CC2(K,IK0) * CC2(K,KJ0)
& - CC2(K,IK1) * CC2(K,KJ1)
& - CC2(K,IK2) * CC2(K,KJ2)
& - CC2(K,IK3) * CC2(K,KJ3)
& - CC2(K,IK4) * CC2(K,KJ4)
100 CONTINUE
105 CONTINUE
C
C ********************* SUM 4 TERMS AT A TIME *************************
C
DO 155 IC = IL4, IH4
IK0 = IKDECA(IC)
IK1 = IKDECB(IC)
IK2 = IKDECC(IC)
IK3 = IKDECD(IC)
KJ0 = KJDECA(IC)
KJ1 = KJDECB(IC)
KJ2 = KJDECC(IC)
KJ3 = KJDECD(IC)
DO 150 K = 1, KTLOOP
CC2(K,IJ) = CC2(K,IJ) - CC2(K,IK0) * CC2(K,KJ0)
& - CC2(K,IK1) * CC2(K,KJ1)
& - CC2(K,IK2) * CC2(K,KJ2)
& - CC2(K,IK3) * CC2(K,KJ3)
150 CONTINUE
155 CONTINUE
C
C ********************* SUM 3 TERMS AT A TIME *************************
C
DO 205 IC = IL3, IH3
IK0 = IKDECA(IC)
IK1 = IKDECB(IC)
IK2 = IKDECC(IC)
KJ0 = KJDECA(IC)
KJ1 = KJDECB(IC)
KJ2 = KJDECC(IC)
DO 200 K = 1, KTLOOP
CC2(K,IJ) = CC2(K,IJ) - CC2(K,IK0) * CC2(K,KJ0)
& - CC2(K,IK1) * CC2(K,KJ1)
& - CC2(K,IK2) * CC2(K,KJ2)
200 CONTINUE
205 CONTINUE
C
C ********************* SUM 2 TERMS AT A TIME *************************
C
DO 255 IC = IL2, IH2
IK0 = IKDECA(IC)
IK1 = IKDECB(IC)
KJ0 = KJDECA(IC)
KJ1 = KJDECB(IC)
DO 250 K = 1, KTLOOP
CC2(K,IJ) = CC2(K,IJ) - CC2(K,IK0) * CC2(K,KJ0)
& - CC2(K,IK1) * CC2(K,KJ1)
250 CONTINUE
255 CONTINUE
C
C ********************* SUM 1 TERM AT A TIME *************************
C
DO 305 IC = IL1, IH1
IK0 = IKDECA(IC)
KJ0 = KJDECA(IC)
DO 300 K = 1, KTLOOP
CC2(K,IJ) = CC2(K,IJ) - CC2(K,IK0) * CC2(K,KJ0)
300 CONTINUE
305 CONTINUE
C
310 CONTINUE
C
C *********************************************************************
C * VDIAG = 1 / CURRENT DIAGONAL TERM OF THE DECOMPOSED MATRIX *
C *********************************************************************
C
IAR = JARRDIAG(J,NCSP)
DO 400 K = 1, KTLOOP
VDIAG(K,J) = 1.0d0 / CC2(K,IAR)
400 CONTINUE
C
C *********************************************************************
C *** SECOND LOOP OF DECOMPOSTION ***
C *********************************************************************
C JZEROA = IDENTIFIES THE ARRAY POSITION OF EACH JLOZ1..JHIZ1 TERM
C
JL = JLOZ1(J,NCSP)
JH = JHIZ1(J,NCSP)
DO 505 JC = JL, JH
IJA = JZEROA(JC)
DO 500 K = 1, KTLOOP
CC2(K,IJA) = CC2(K,IJA) * VDIAG(K,J)
500 CONTINUE
505 CONTINUE
C
510 CONTINUE
C
C *********************************************************************
C ********************* END OF SUBROUTINE DECOMP *********************
C *********************************************************************
C
RETURN
END SUBROUTINE DECOMP