Files
2018-08-28 00:40:44 -04:00

3444 lines
119 KiB
Fortran

!$Id: tes_o3_mod.f,v 1.3 2011/02/23 00:08:48 daven Exp $
MODULE TES_O3_MOD
IMPLICIT NONE
!mkeller
#include "CMN_SIZE"
!#include 'netcdf.inc'
!=================================================================
! MODULE VARIABLES
!=================================================================
PRIVATE
PUBLIC READ_TES_O3_OBS
PUBLIC CALC_TES_O3_FORCE
PUBLIC MAKE_TES_BIAS_FILE_HDF5
! Parameters
INTEGER, PARAMETER :: MAXLEV = 67
INTEGER, PARAMETER :: MAXTES = 2000
! Record to store data from each TES obs
TYPE TES_O3_OBS
INTEGER :: LTES(1)
REAL*8 :: LAT(1)
REAL*8 :: LON(1)
REAL*8 :: TIME(1)
REAL*8 :: O3(MAXLEV)
REAL*8 :: PRES(MAXLEV)
REAL*8 :: PRIOR(MAXLEV)
REAL*8 :: AVG_KERNEL(MAXLEV,MAXLEV)
REAL*8 :: S_OER(MAXLEV,MAXLEV)
REAL*8 :: S_OER_INV(MAXLEV,MAXLEV)
!mkeller: TES retrieval quality flag
INTEGER :: QUALITY_FLAG(1)
ENDTYPE TES_O3_OBS
TYPE(TES_O3_OBS) :: TES(MAXTES)
!mkeller: arrays for saving diagnostics
TYPE FLEX_REAL_1D
INTEGER :: CURRENT_N, MAX_N
REAL*8,ALLOCATABLE :: DATA(:)
ENDTYPE FLEX_REAL_1D
TYPE FLEX_REAL_2D
INTEGER :: CURRENT_N, MAX_N
REAL*8,ALLOCATABLE :: DATA(:,:)
ENDTYPE FLEX_REAL_2D
REAL*4 :: TES_O3_MEAN(IIPAR,JJPAR,MAXLEV)=0d0
REAL*4 :: TES_GC_O3_MEAN(IIPAR,JJPAR,MAXLEV)=0d0
REAL*4 :: TES_BIAS(IIPAR,JJPAR,MAXLEV)=0d0
REAL*4 :: TES_BIAS_COUNT(IIPAR,JJPAR,MAXLEV)=0d0
REAL*4 :: TES_PRESSURE(MAXLEV)
! mkeller: flex arrays to store satellite diagnostics sequentially
TYPE(FLEX_REAL_1D) :: FLEX_LON, FLEX_LAT, FLEX_TIME
TYPE(FLEX_REAL_2D) :: FLEX_TES_O3, FLEX_GC_O3
! mkeller: logical flag to check whether data is available for given day
LOGICAL :: DATA_PRESENT
CONTAINS
!------------------------------------------------------------------------------
SUBROUTINE READ_TES_O3_OBS( YYYYMMDD, NTES )
!
!******************************************************************************
! Subroutine READ_TES_O3_OBS reads the file and passes back info contained
! therein. (dkh, 02/19/09)
!
! Based on READ_TES_NH3 OBS (dkh, 04/26/10)
!
! Arguments as Input:
! ============================================================================
! (1 ) YYYYMMDD INTEGER : Current year-month-day
!
! Arguments as Output:
! ============================================================================
! (1 ) NTES (INTEGER) : Number of TES retrievals for current day
!
! Module variable as Output:
! ============================================================================
! (1 ) TES (TES_O3_OBS) : TES retrieval for current day
!
! NOTES:
! (1 ) Add calculation of S_OER_INV, though eventually we probably want to
! do this offline. (dkh, 05/04/10)
!******************************************************************************
!
! Reference to f90 modules
USE DIRECTORY_MOD, ONLY : DATA_DIR
USE NETCDF
USE TIME_MOD, ONLY : EXPAND_DATE
! Arguments
INTEGER, INTENT(IN) :: YYYYMMDD
! local variables
INTEGER :: FID
INTEGER :: LTES
INTEGER :: NTES
INTEGER :: START0(1), COUNT0(1)
INTEGER :: START1(2), COUNT1(2)
INTEGER :: START2(3), COUNT2(3)
INTEGER :: N, J
INTEGER :: NT_ID
INTEGER :: O3_ID
INTEGER :: PS_ID
INTEGER :: AK_ID
INTEGER :: OE_ID
INTEGER :: AP_ID
INTEGER :: LA_ID
INTEGER :: LO_ID
INTEGER :: DY_ID
!mkeller: additional variables for quality flag
INTEGER :: QU_ID
CHARACTER(LEN=5) :: TMP
CHARACTER(LEN=255) :: READ_FILENAME
CHARACTER(LEN=255) :: DIR_MONTH
CHARACTER(LEN=255) :: DIR_TES
REAL*8, PARAMETER :: FILL = -999.0D0
REAL*8, PARAMETER :: TOL = 1d-04
REAL*8 :: U(MAXLEV,MAXLEV)
REAL*8 :: VT(MAXLEV,MAXLEV)
REAL*8 :: S(MAXLEV)
REAL*8 :: TMP1
REAL*8 :: TEST(MAXLEV,MAXLEV)
INTEGER :: I, II, III
!=================================================================
! READ_TES_O3_OBS begins here!
!=================================================================
! filename root
DIR_TES = '/users/jk/16/xzhang/TES_O3/'
READ_FILENAME = TRIM( 'tes_aura_nadir_YYYYMMDD_O3_v6.nc' )
DIR_MONTH = 'YYYY/MM/'
! Expand date tokens in filename
CALL EXPAND_DATE( READ_FILENAME, YYYYMMDD, 9999 )
CALL EXPAND_DATE( DIR_MONTH, YYYYMMDD, 9999 )
! Construct complete filename
READ_FILENAME = TRIM( DIR_TES ) // TRIM( DIR_MONTH ) //
& TRIM( READ_FILENAME )
WRITE(6,*) ' - READ_TES_O3_OBS: reading file: ', READ_FILENAME
! mkeller: check to see if file exists
INQUIRE(FILE=READ_FILENAME, EXIST = DATA_PRESENT)
IF (.NOT. DATA_PRESENT) THEN
PRINT *,"TES file '", TRIM(READ_FILENAME), " not found, "//
& "assuming that there is no data for this day."
RETURN
ELSE
PRINT *,"TES file found!"
ENDIF
! Open file and assign file id (FID)
CALL CHECK( NF90_OPEN( READ_FILENAME, NF90_NOWRITE, FID ), 0 )
!--------------------------------
! Get data record IDs
!--------------------------------
CALL CHECK( NF90_INQ_DIMID( FID, "targets", NT_ID), 102 )
CALL CHECK( NF90_INQ_VARID( FID, "species", O3_ID ), 103 )
CALL CHECK( NF90_INQ_VARID( FID, "averagingkernel", AK_ID ), 104 )
CALL CHECK( NF90_INQ_VARID( FID, "pressure", PS_ID ), 105 )
CALL CHECK( NF90_INQ_VARID( FID, "observationerrorcovariance",
& OE_ID ), 106 )
CALL CHECK( NF90_INQ_VARID( FID, "constraintvector",AP_ID ), 107 )
CALL CHECK( NF90_INQ_VARID( FID, "latitude", LA_ID ), 108 )
CALL CHECK( NF90_INQ_VARID( FID, "longitude", LO_ID ), 109 )
CALL CHECK( NF90_INQ_VARID( FID, "yyyymmdd", DY_ID ), 110 )
CALL CHECK( NF90_INQ_VARID( FID, "speciesretrievalconverged",
& QU_ID ), 111 )
! READ number of retrievals, NTES
CALL CHECK( NF90_INQUIRE_DIMENSION( FID, NT_ID, TMP, NTES), 202 )
!print*, ' NTES = ', NTES
!--------------------------------
! Read 0D Data
!--------------------------------
! mkeller: read in TES pressure levels for satellite diagnostics
! this only needs to be done once, add logical flag here
! the TES retrieval pressure grid can vary near the surface, there shouldn't be any
! data reported on those levels in the diagnostic output.
! not sure what the proper way to do this is for Level3 data...
! for Level2 data, should all individual retrieval grids be written out?
CALL CHECK( NF90_GET_VAR ( FID, PS_ID,
& TES_PRESSURE, (/1,1/), (/MAXLEV,1/)), 402 )
!PRINT *, "TES_PRESSURE", TES_PRESSURE
! define record size
START0 = (/1/)
COUNT0 = (/1/)
! loop over records
DO N = 1, NTES
! Update starting index
START0(1) = N
! READ latitude
CALL CHECK( NF90_GET_VAR ( FID, LA_ID,
& TES(N)%LAT, START0, COUNT0 ), 301 )
! READ longitude
CALL CHECK( NF90_GET_VAR ( FID, LO_ID,
& TES(N)%LON, START0, COUNT0 ), 302 )
! READ date
CALL CHECK( NF90_GET_VAR ( FID, DY_ID,
& TES(N)%TIME, START0, COUNT0 ), 303 )
! READ quality flag
CALL CHECK( NF90_GET_VAR ( FID, QU_ID,
& TES(N)%QUALITY_FLAG, START0, COUNT0 ), 304 )
ENDDO
!--------------------------------
! Find # of good levels for each
!--------------------------------
! define record size
START1 = (/1, 1/)
COUNT1 = (/MAXLEV, 1/)
! loop over records
DO N = 1, NTES
! Update starting index
START1(2) = N
! READ O3 column, O3
CALL CHECK( NF90_GET_VAR ( FID, O3_ID,
& TES(N)%O3(1:MAXLEV), START1, COUNT1 ), 401 )
! Now determine how many of the levels in O3 are
! 'good' and how many are just FILL.
J = 1
DO WHILE ( J .le. MAXLEV )
! check if the value is good
IF ( TES(N)%O3(J) > FILL ) THEN
! save the number of good levels as LTES
TES(N)%LTES = MAXLEV - J + 1
! and now we can exit the while loop
J = MAXLEV + 1
! otherwise this level is just filler
ELSE
! so proceed to the next one up
J = J + 1
ENDIF
ENDDO
ENDDO
!--------------------------------
! Read 1D Data
!--------------------------------
! loop over records
DO N = 1, NTES
! J is number of good levels
J = TES(N)%LTES(1)
! define record size
START1 = (/MAXLEV - J + 1, 1/)
COUNT1 = (/J, 1/)
! Update starting index
START1(2) = N
! READ O3 column, O3
CALL CHECK( NF90_GET_VAR ( FID, O3_ID,
& TES(N)%O3(1:J), START1, COUNT1 ), 401 )
! READ pressure levels, PRES
CALL CHECK( NF90_GET_VAR ( FID, PS_ID,
& TES(N)%PRES(1:J), START1, COUNT1 ), 402 )
! READ apriori O3 column, PRIOR
CALL CHECK( NF90_GET_VAR ( FID, AP_ID,
& TES(N)%PRIOR(1:J), START1, COUNT1 ), 403 )
ENDDO
!--------------------------------
! Read 2D Data
!--------------------------------
! loop over records
DO N = 1, NTES
! J is number of good levels
J = TES(N)%LTES(1)
! define record size
START2 = (/MAXLEV - J + 1, MAXLEV - J + 1, 1/)
COUNT2 = (/J, J, 1/)
! Update starting index
START2(3) = N
! READ averaging kernal, AVG_KERNEL
CALL CHECK( NF90_GET_VAR ( FID, AK_ID,
& TES(N)%AVG_KERNEL(1:J,1:J), START2, COUNT2), 501 )
! READ observational error covariance
CALL CHECK( NF90_GET_VAR ( FID, OE_ID,
& TES(N)%S_OER(1:J,1:J), START2, COUNT2), 502 )
ENDDO
! Close the file
CALL CHECK( NF90_CLOSE( FID ), 9999 )
!--------------------------------
! Calculate S_OER_INV
!--------------------------------
! loop over records
DO N = 1, NTES
J = TES(N)%LTES(1)
!print*, ' TES test ', TES(N)%O3
!print*, ' TES good ', TES(N)%LTES
!print*, ' TES pres ', TES(N)%PRES(1:J)
! Add a bit to the diagonal to regularize the inversion
! (ks, ml, dkh, 11/18/10)
! mkeller: this makes no sense to me.
!DO II=1,J
! TES(N)%S_OER(II,II) = TES(N)%S_OER(II,II)+ 0.001D0
!ENDDO
CALL SVD( TES(N)%S_OER(1:J,1:J), J,
& U(1:J,1:J), S(1:J),
& VT(1:J,1:J) )
! U = S^-1 * U^T
TEST = 0d0
DO I = 1, J
! mkeller: regularize matrix inverse by ignoring all singular values below a certain cutoff.
! This is horrendously inefficient, but should work for now. In the
! future, Thikonov regularization should be implemented instead.
! xzhang: svd test critical value changes from 1e-2 to 5e-2
IF ( S(I)/S(1) < 1e-2 ) THEN
S(I) = 1e-2 * S(1)
ENDIF
DO II = 1, J
TEST(I,II) = U(II,I) / S(I)
ENDDO
ENDDO
!TEST = 0d0
U = TEST
TEST = 0d0
! S_OER_INV = V * S^-1 * U^T
DO I = 1, J
DO II = 1, J
TMP1 = 0d0
DO III = 1, J
TMP1 = TMP1 + VT(III,I) * U(III,II)
ENDDO
TES(N)%S_OER_INV(I,II) = TMP1
ENDDO
ENDDO
! TEST: calculate 2-norm of I - S_OER_INV * S_OER
! mkeller: comment this out for now; pointless given the regularization
! performed above.
! Need to come up with an alternative test in the future.
!DO I = 1, J
! DO II = 1, J
! TMP1 = 0d0
! DO III = 1, J
! TMP1 = TMP1
!& + TES(N)%S_OER_INV(III,I) * TES(N)%S_OER(III,II)
!ENDDO
!TEST(I,II) = - TMP1
!ENDDO
!TEST(I,I) = ( TEST(I,I) + 1 ) ** 2
!ENDDO
!IF ( SUM(TEST(1:J,1:J)) > TOL ) THEN
! print*, ' WARNING: inversion error for retv N = ',
!& SUM(TEST(1:J,1:J)), N
! print*, ' in TES obs ', READ_FILENAME
! ENDIF
ENDDO ! N
! Return to calling program
END SUBROUTINE READ_TES_O3_OBS
!------------------------------------------------------------------------------
SUBROUTINE CHECK( STATUS, LOCATION )
!
!******************************************************************************
! Subroutine CHECK checks the status of calls to netCDF libraries routines
! (dkh, 02/15/09)
!
! Arguments as Input:
! ============================================================================
! (1 ) STATUS (INTEGER) : Completion status of netCDF library call
! (2 ) LOCATION (INTEGER) : Location at which netCDF library call was made
!
!
! NOTES:
!
!******************************************************************************
!
! Reference to f90 modules
USE ERROR_MOD, ONLY : ERROR_STOP
USE NETCDF
! Arguments
INTEGER, INTENT(IN) :: STATUS
INTEGER, INTENT(IN) :: LOCATION
!=================================================================
! CHECK begins here!
!=================================================================
IF ( STATUS /= NF90_NOERR ) THEN
WRITE(6,*) TRIM( NF90_STRERROR( STATUS ) )
WRITE(6,*) 'At location = ', LOCATION
CALL ERROR_STOP('netCDF error', 'tes_nh3_mod')
ENDIF
! Return to calling program
END SUBROUTINE CHECK
!------------------------------------------------------------------------------
SUBROUTINE CALC_TES_O3_FORCE( COST_FUNC )
!
!******************************************************************************
! Subroutine CALC_TES_O3_FORCE calculates the adjoint forcing from the TES
! O3 observations and updates the cost function. (dkh, 02/15/09)
!
!
! Arguments as Input/Output:
! ============================================================================
! (1 ) COST_FUNC (REAL*8) : Cost funciton [unitless]
!
!
! NOTES:
! (1 ) Updated to GCv8 (dkh, 10/07/09)
! (2 ) Add more diagnostics. Now read and write doubled O3 (dkh, 11/08/09)
! (3 ) Now use CSPEC_AFTER_CHEM and CSPEC_AFTER_CHEM_ADJ (dkh, 02/09/11)
!******************************************************************************
!
! Reference to f90 modules
USE ADJ_ARRAYS_MOD, ONLY : STT_ADJ
USE ADJ_ARRAYS_MOD, ONLY : N_CALC
USE ADJ_ARRAYS_MOD, ONLY : EXPAND_NAME
USE ADJ_ARRAYS_MOD, ONLY : O3_PROF_SAV
USE ADJ_ARRAYS_MOD, ONLY : ID2C
USE CHECKPT_MOD, ONLY : CHK_STT
USE COMODE_MOD, ONLY : JLOP
USE COMODE_MOD, ONLY : CSPEC_AFTER_CHEM
USE COMODE_MOD, ONLY : CSPEC_AFTER_CHEM_ADJ
USE DAO_MOD, ONLY : AD
USE DAO_MOD, ONLY : AIRDEN
USE DAO_MOD, ONLY : BXHEIGHT
USE DIRECTORY_ADJ_MOD, ONLY : DIAGADJ_DIR
USE GRID_MOD, ONLY : GET_IJ
USE PRESSURE_MOD, ONLY : GET_PCENTER, GET_PEDGE
USE TIME_MOD, ONLY : GET_NYMD, GET_NHMS
USE TIME_MOD, ONLY : GET_TS_CHEM
USE TRACER_MOD, ONLY : XNUMOLAIR
USE TRACER_MOD, ONLY : TCVV
USE TRACERID_MOD, ONLY : IDO3, IDTOX
USE TROPOPAUSE_MOD, ONLY : ITS_IN_THE_TROP
# include "CMN_SIZE" ! Size params
! Arguments
REAL*8, INTENT(INOUT) :: COST_FUNC
! Local variables
INTEGER :: NTSTART, NTSTOP, NT
INTEGER :: IIJJ(2), I, J
INTEGER :: L, LL, LTES
INTEGER :: JLOOP
REAL*8 :: GC_PRES(LLPAR)
REAL*8 :: GC_O3_NATIVE(LLPAR)
REAL*8 :: GC_O3(MAXLEV)
REAL*8 :: GC_PSURF
REAL*8 :: MAP(LLPAR,MAXLEV)
REAL*8 :: O3_HAT(MAXLEV)
REAL*8 :: O3_PERT(MAXLEV)
REAL*8 :: FORCE(MAXLEV)
REAL*8 :: DIFF(MAXLEV)
REAL*8 :: DIFF_V(MAXLEV)
REAL*8 :: NEW_COST(MAXTES)
REAL*8 :: OLD_COST
REAL*8, SAVE :: TIME_FRAC(MAXTES)
INTEGER,SAVE :: NTES
REAL*8 :: GC_O3_NATIVE_ADJ(LLPAR)
REAL*8 :: O3_HAT_ADJ(MAXLEV)
REAL*8 :: O3_PERT_ADJ(MAXLEV)
REAL*8 :: GC_O3_ADJ(MAXLEV)
REAL*8 :: DIFF_ADJ(MAXLEV)
REAL*8 :: GC_ADJ_TEMP(IIPAR,JJPAR,LLPAR)
REAL*8 :: GC_ADJ_TEMP_COST(IIPAR,JJPAR)
REAL*8 :: GC_ADJ_COUNT(IIPAR,JJPAR,LLPAR)
LOGICAL, SAVE :: FIRST = .TRUE.
INTEGER :: IOS
CHARACTER(LEN=255) :: FILENAME
!mkeller
REAL*8 :: TEMP_BIAS_TES(MAXLEV)
REAL*8 :: TEMP_BIAS_GC(LLPAR)
!=================================================================
! CALC_TES_O3_FORCE begins here!
!=================================================================
print*, ' - CALC_TES_O3_FORCE '
! Reset
NEW_COST = 0D0
GC_ADJ_COUNT = 0d0
GC_ADJ_TEMP = 0d0
GC_ADJ_TEMP_COST = 0d0
! Open files for diagnostic output
IF ( FIRST ) THEN
FILENAME = 'pres_tes.NN.m'
CALL EXPAND_NAME( FILENAME, N_CALC )
FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
OPEN( 101, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
& IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
FILENAME = 'gc_o3.NN.m'
CALL EXPAND_NAME( FILENAME, N_CALC )
FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
OPEN( 102, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
& IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
FILENAME = 'tes_o3.NN.m'
CALL EXPAND_NAME( FILENAME, N_CALC )
FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
OPEN( 103, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
& IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
FILENAME = 'apriori.NN.m'
CALL EXPAND_NAME( FILENAME, N_CALC )
FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
OPEN( 104, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
& IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
FILENAME = 'diff_tes.NN.m'
CALL EXPAND_NAME( FILENAME, N_CALC )
FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
OPEN( 105, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
& IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
FILENAME = 'force.NN.m'
CALL EXPAND_NAME( FILENAME, N_CALC )
FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
OPEN( 106, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
& IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
FILENAME = 'nt_ll.NN.m'
CALL EXPAND_NAME( FILENAME, N_CALC )
FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
OPEN( 107, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
& IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
FILENAME = 'o3_pert_adj.NN.m'
CALL EXPAND_NAME( FILENAME, N_CALC )
FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
OPEN( 108, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
& IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
FILENAME = 'gc_o3_adj.NN.m'
CALL EXPAND_NAME( FILENAME, N_CALC )
FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
OPEN( 109, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
& IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
FILENAME = 'exp_o3_hat.NN.m'
CALL EXPAND_NAME( FILENAME, N_CALC )
FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
OPEN( 110, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
& IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
FILENAME = 'gc_press_tes.NN.m'
CALL EXPAND_NAME( FILENAME, N_CALC )
FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
OPEN( 111, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
& IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
FILENAME = 'gc_o3_native.NN.m'
CALL EXPAND_NAME( FILENAME, N_CALC )
FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
OPEN( 112, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
& IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
FILENAME = 'gc_o3_on_tes.NN.m'
CALL EXPAND_NAME( FILENAME, N_CALC )
FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
OPEN( 113, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
& IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
FILENAME = 'gc_o3_native_adj.NN.m'
CALL EXPAND_NAME( FILENAME, N_CALC )
FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
OPEN( 114, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
& IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
FILENAME = 'lat_orb_teso3.NN.m'
CALL EXPAND_NAME( FILENAME, N_CALC )
FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
OPEN( 115, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
& IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
! mkeller: initialize flex arrays
CALL INIT_FLEX_REAL_1D(FLEX_LON)
CALL INIT_FLEX_REAL_1D(FLEX_LAT)
CALL INIT_FLEX_REAL_1D(FLEX_TIME)
CALL INIT_FLEX_REAL_2D(FLEX_TES_O3)
CALL INIT_FLEX_REAL_2D(FLEX_GC_O3)
ENDIF
! Save a value of the cost function first
OLD_COST = COST_FUNC
! Check if it is the last hour of a day
IF ( GET_NHMS() == 236000 - GET_TS_CHEM() * 100 ) THEN
! Read the TES O3 file for this day
CALL READ_TES_O3_OBS( GET_NYMD(), NTES )
! TIME is YYYYMMDD.frac-of-day. Subtract date and save just time fraction
TIME_FRAC(1:NTES) = TES(1:NTES)%TIME(1) - GET_NYMD()
ENDIF
IF(.NOT. DATA_PRESENT) THEN
PRINT *,"No TES data present for this day, nothing to do here."
RETURN
ENDIF
! Get the range of TES retrievals for the current hour
CALL GET_NT_RANGE( NTES, GET_NHMS(), TIME_FRAC, NTSTART, NTSTOP )
IF ( NTSTART == 0 .and. NTSTOP == 0 ) THEN
print*, ' No matching TES O3 obs for this hour'
RETURN
ENDIF
print*, ' for hour range: ', GET_NHMS(), TIME_FRAC(NTSTART),
& TIME_FRAC(NTSTOP)
print*, ' found record range: ', NTSTART, NTSTOP
! need to update this in order to do i/o with this loop parallel
! ! Now do a parallel loop for analyzing data
!!$OMP PARALLEL DO
!!$OMP+DEFAULT( SHARED )
!!$OMP+PRIVATE( NT, MAP, LTES, IIJJ, I, J, L, LL, JLOOP )
!!$OMP+PRIVATE( GC_PRES, GC_PSURF, GC_O3, DIFF )
!!$OMP+PRIVATE( GC_O3_NATIVE, O3_PERT, O3_HAT, FORCE )
!!$OMP+PRIVATE( GC_O3_NATIVE_ADJ, GC_O3_ADJ )
!!$OMP+PRIVATE( O3_PERT_ADJ, O3_HAT_ADJ )
!!$OMP+PRIVATE( DIFF_ADJ )
DO NT = NTSTART, NTSTOP, -1
print*, ' - CALC_TES_O3_FORCE: analyzing record ', NT
PRINT *,"TES quality flag:", TES(NT)%QUALITY_FLAG(1)
IF( TES(NT)%QUALITY_FLAG(1) == 0 ) THEN
PRINT *,"TES retrieval didn't converge; skipping record"
CYCLE
ENDIF
! For safety, initialize these up to LLTES
GC_O3(:) = 0d0
MAP(:,:) = 0d0
O3_HAT_ADJ(:) = 0d0
FORCE(:) = 0d0
DIFF(:) = 0d0
DIFF_V(:) = 0d0
!TEMP_BIAS_TES(:) = 0d0
!TEMP_BIAS_GC(:) = 0d0
! Copy LTES to make coding a bit cleaner
LTES = TES(NT)%LTES(1)
! Get grid box of current record
IIJJ = GET_IJ( REAL(TES(NT)%LON(1),4), REAL(TES(NT)%LAT(1),4))
I = IIJJ(1)
J = IIJJ(2)
PRINT *, "TES_LAT", REAL(TES(NT)%LAT(1))
! dkh debug
!print*, 'I,J = ', I, J
! Get GC pressure levels (mbar)
DO L = 1, LLPAR
GC_PRES(L) = GET_PCENTER(I,J,L)
ENDDO
! Get GC surface pressure (mbar)
GC_PSURF = GET_PEDGE(I,J,1)
! Calculate the interpolation weight matrix
MAP(1:LLPAR,1:LTES)
& = GET_INTMAP( LLPAR, GC_PRES(:), GC_PSURF,
& LTES, TES(NT)%PRES(1:LTES), GC_PSURF )
!mkeller: store TES pressure in diagnostic array. Should only be done once, as retrieval pressures don't vary between retrievals.
! needs to be fixed.
!TES_PRESSURE = TES(NT)%PRES
! Get O3 values at native model resolution
DO L = 1, LLPAR
! check if in trop
!IF ( ITS_IN_THE_TROP(I,J,L) ) THEN
!JLOOP = JLOP(I,J,L)
! get O3 from tropospheric array
!IF ( JLOOP > 0 ) THEN
!GC_O3_NATIVE(L) = CSPEC(JLOOP,IDO3)
!GC_O3_NATIVE(L) = CSPEC_AFTER_CHEM(JLOOP,ID2C(IDO3))
! Convert from #/cm3 to v/v
!GC_O3_NATIVE(L) = GC_O3_NATIVE(L) * 1d6 /
& !( AIRDEN(L,I,J) * XNUMOLAIR )
!ELSE
! ! get O3 from climatology [#/cm2]
! GC_O3_NATIVE(L) = O3_PROF_SAV(I,J,L) /
! & ( BXHEIGHT(I,J,L) * 100d0 )
!GC_O3_NATIVE(L) = 1d0
! mkeller: use LINOZ Ox from stored from forward run instead
! kg -> v/v
!GC_O3_NATIVE(L) = CHK_STT(I,J,L,IDTOX) *
& !TCVV(IDTOX) / AD(I,J,L)
!ENDIF
!ELSE
! get O3 from climatology [#/cm2]
! GC_O3_NATIVE(L) = O3_PROF_SAV(I,J,L) /
! & ( BXHEIGHT(I,J,L) * 100d0 )
!GC_O3_NATIVE(L) = 1d0
GC_O3_NATIVE(L) = CHK_STT(I,J,L,IDTOX) *
& TCVV(IDTOX) / AD(I,J,L)
!ENDIF
! GC_O3_NATIVE(L) = GC_O3_NATIVE(L) * 1d6 /
! & ( AIRDEN(L,I,J) * XNUMOLAIR )
ENDDO
! Interpolate GC O3 column to TES grid
DO LL = 1, LTES
GC_O3(LL) = 0d0
DO L = 1, LLPAR
GC_O3(LL) = GC_O3(LL)
& + MAP(L,LL) * GC_O3_NATIVE(L)
ENDDO
ENDDO
! dkh debug: compare profiles:
!print*, ' GC_PRES, GC_native_O3 [ppb] '
!WRITE(6,100) (GC_PRES(L), GC_O3_NATIVE(L)*1d9,
! & L = LLPAR, 1, -1 )
!print*, ' TES_PRES, GC_O3 '
!WRITE(6,100) (TES(NT)%PRES(LL),
! & GC_O3(LL)*1d9, LL = LTES, 1, -1 )
100 FORMAT(1X,F16.8,1X,F16.8)
!--------------------------------------------------------------
! Apply TES observation operator
!
! x_hat = x_a + A_k ( x_m - x_a )
!
! where
! x_hat = GC modeled column as seen by TES [lnvmr]
! x_a = TES apriori column [lnvmr]
! x_m = GC modeled column [lnvmr]
! A_k = TES averaging kernel
!--------------------------------------------------------------
! x_m - x_a
DO L = 1, LTES
GC_O3(L) = MAX(GC_O3(L), 1d-10)
O3_PERT(L) = LOG(GC_O3(L)) - LOG(TES(NT)%PRIOR(L))
ENDDO
! x_a + A_k * ( x_m - x_a )
DO L = 1, LTES
O3_HAT(L) = 0d0
DO LL = 1, LTES
O3_HAT(L) = O3_HAT(L)
& + TES(NT)%AVG_KERNEL(L,LL) * O3_PERT(LL)
ENDDO
O3_HAT(L) = O3_HAT(L) + LOG(TES(NT)%PRIOR(L))
ENDDO
!--------------------------------------------------------------
! Calculate cost function, given S is error on ln(vmr)
! J = 1/2 [ model - obs ]^T S_{obs}^{-1} [ ln(model - obs ]
!--------------------------------------------------------------
! Calculate difference between modeled and observed profile
! mkeller: diagnostics need an OMP CRITICAL directive
!!$OMP CRITICAL
DO L = 1, LTES
IF ( TES(NT)%O3(L) > 11d-9 ) THEN
IF ( REAL(TES(NT)%LAT(1)) > 56.6 ) THEN
IF ( TES(NT)%PRES(L) > 500 ) THEN
DIFF(L) = O3_HAT(L) - LOG( TES(NT)%O3(L) )
DIFF_V(L) = exp(O3_HAT(L)) - TES(NT)%O3(L)
ELSE
DIFF(L) = O3_HAT(L) - LOG( TES(NT)%O3(L) - 6.4d-9 )
DIFF_V(L) = exp(O3_HAT(L)) - (TES(NT)%O3(L)-6.4d-9)
ENDIF
ELSEIF ( REAL(TES(NT)%LAT(1)) > 35.0 ) THEN
DIFF(L) = O3_HAT(L) - LOG( TES(NT)%O3(L) -5.9d-9 )
DIFF_V(L) = exp(O3_HAT(L)) - (TES(NT)%O3(L)-5.9d-9)
ELSEIF ( REAL(TES(NT)%LAT(1)) > 15.0 ) THEN
IF ( TES(NT)%PRES(L) > 500 ) THEN
DIFF(L) = O3_HAT(L) - LOG( TES(NT)%O3(L) - 7.5d-9 )
DIFF_V(L) = exp(O3_HAT(L)) - (TES(NT)%O3(L)-7.5d-9)
ELSE
DIFF(L) = O3_HAT(L) - LOG( TES(NT)%O3(L) - 10.2d-9)
DIFF_V(L) = exp(O3_HAT(L)) -(TES(NT)%O3(L)-10.2d-9)
ENDIF
ELSEIF ( REAL(TES(NT)%LAT(1)) > -15.0 ) THEN
IF ( TES(NT)%PRES(L) > 500 ) THEN
DIFF(L) = O3_HAT(L) - LOG( TES(NT)%O3(L) - 9.2d-9 )
DIFF_V(L) = exp(O3_HAT(L))-(TES(NT)%O3(L) - 9.2d-9)
ELSE
DIFF(L) = O3_HAT(L) - LOG( TES(NT)%O3(L) - 2.9d-9 )
DIFF_V(L) = exp(O3_HAT(L))-(TES(NT)%O3(L) - 2.9d-9)
ENDIF
ELSEIF ( REAL(TES(NT)%LAT(1)) > -47.7 ) THEN
IF ( TES(NT)%PRES(L) > 500 ) THEN
DIFF(L) = O3_HAT(L) - LOG( TES(NT)%O3(L) - 3.7d-9 )
DIFF_V(L) = exp(O3_HAT(L))-(TES(NT)%O3(L) - 3.7d-9)
ELSE
DIFF(L) = O3_HAT(L) - LOG( TES(NT)%O3(L) - 3.4d-9 )
DIFF_V(L) = exp(O3_HAT(L))-(TES(NT)%O3(L) - 3.4d-9)
ENDIF
ELSEIF ( REAL(TES(NT)%LAT(1)) < -61.9 ) THEN
IF ( TES(NT)%PRES(L) > 500 ) THEN
DIFF(L) = O3_HAT(L) - LOG( TES(NT)%O3(L) )
DIFF_V(L) = exp(O3_HAT(L)) - TES(NT)%O3(L)
ELSE
DIFF(L) = O3_HAT(L) - LOG( TES(NT)%O3(L) - 10.6d-9)
DIFF_V(L) = exp(O3_HAT(L)) -(TES(NT)%O3(L)-10.6d-9)
ENDIF
ENDIF
!mkeller: store difference in VMR on retrieval grid
TES_O3_MEAN(I,J,MAXLEV-LTES + L) =
& TES_O3_MEAN(I,J,MAXLEV-LTES + L) + TES(NT)%O3(L)
TES_GC_O3_MEAN(I,J,MAXLEV-LTES + L) =
& TES_GC_O3_MEAN(I,J,MAXLEV-LTES + L) + exp(O3_HAT(L))
TES_BIAS(I,J,MAXLEV-LTES + L) =
& TES_BIAS(I,J,MAXLEV-LTES + L) +
& exp(O3_HAT(L)) - TES(NT)%O3(L)
TES_BIAS_COUNT(I,J,MAXLEV-LTES + L) =
& TES_BIAS_COUNT(I,J,MAXLEV-LTES + L) + 1
ELSE
DIFF(L) = 0d0
DIFF_V(L) = 0d0
ENDIF
ENDDO
! store current information in flexible arrays
CALL PUSH_FLEX_REAL_1D(FLEX_LON, TES(NT)%LON(1))
CALL PUSH_FLEX_REAL_1D(FLEX_LAT, TES(NT)%LAT(1))
CALL PUSH_FLEX_REAL_1D(FLEX_TIME, TES(NT)%TIME(1))
CALL PUSH_FLEX_REAL_2D(FLEX_TES_O3, TES(NT)%O3, LTES)
CALL PUSH_FLEX_REAL_2D(FLEX_GC_O3, exp(O3_HAT),LTES)
!!$OMP END CRITICAL
! Calculate 1/2 * DIFF^T * S_{obs}^{-1} * DIFF
DO L = 1, LTES
FORCE(L) = 0d0
DO LL = 1, LTES
FORCE(L) = FORCE(L) + TES(NT)%S_OER_INV(L,LL) * DIFF(LL)
ENDDO
NEW_COST(NT) = NEW_COST(NT) + 0.5d0 * DIFF(L) * FORCE(L)
ENDDO
! dkh debug: compare profiles:
!mkeller: comment this out for now, not needed
!print*, ' TES_PRIOR, O3_HAT, O3_TES [ppb]'
!WRITE(6,090) ( 1d9 * TES(NT)%PRIOR(L),
! & 1d9 * EXP(O3_HAT(L)),
! & 1d9 * TES(NT)%O3(L),
! & L, L = LTES, 1, -1 )
!print*, ' TES_PRIOR, O3_HAT, O3_TES [lnvmr], diag(S^-1)'
!WRITE(6,101) ( LOG(TES(NT)%PRIOR(L)), O3_HAT(L),
! & LOG(TES(NT)%O3(L)), TES(NT)%S_OER_INV(L,L),
! & L, L = LTES, 1, -1 )
090 FORMAT(1X,F16.8,1X,F16.8,1X,F16.8,1X,i3)
101 FORMAT(1X,F16.8,1X,F16.8,1X,F16.8,1X,d14.6,1x,i3)
!mkeller: discard observations that yield negative cost function contributions
IF (NEW_COST(NT) < 0d0) THEN
PRINT *,"TES_DEBUG: DISCARD OBSERVATIONS FOR NT=",NT
NEW_COST(NT) = 0d0
DIFF = 0d0
FORCE = 0d0
CYCLE
ENDIF
!--------------------------------------------------------------
! Begin adjoint calculations
!--------------------------------------------------------------
! dkh debug
!print*, 'DIFF , FORCE '
!WRITE(6,102) (DIFF(L), FORCE(L),
! & L = LTES, 1, -1 )
102 FORMAT(1X,d14.6,1X,d14.6)
! The adjoint forcing is S_{obs}^{-1} * DIFF = FORCE
DIFF_ADJ(:) = FORCE(:)
!print*, ' FORCE with 1 for sensitivity '
!print*, ' FORCE with 1 for sensitivity '
!print*, ' FORCE with 1 for sensitivity '
!print*, ' FORCE with 1 for sensitivity '
!ADJ_DIFF(:) = 1d0
!NEW_COST(NT) = ?? SUM(ABS(LOG(O3_HAT(1:LTES))))
!print*, ' sumlog =', SUM(ABS(LOG(O3_HAT(:))))
!print*, ' sumlog =', ABS(LOG(O3_HAT(:)))
! Adjoint of difference
DO L = 1, LTES
IF ( TES(NT)%O3(L) > 0d0 ) THEN
O3_HAT_ADJ(L) = DIFF_ADJ(L)
ENDIF
ENDDO
! adjoint of TES operator
DO L = 1, LTES
O3_PERT_ADJ(L) = 0d0
DO LL = 1, LTES
O3_PERT_ADJ(L) = O3_PERT_ADJ(L)
& + TES(NT)%AVG_KERNEL(LL,L)
& * O3_HAT_ADJ(LL)
ENDDO
ENDDO
! Adjoint of x_m - x_a
DO L = 1, LTES
! fwd code:
!GC_O3(L) = MAX(GC_O3(L), 1d-10)
!O3_PERT(L) = LOG(GC_O3(L)) - LOG(TES(NT)%PRIOR(L))
! adj code:
IF ( GC_O3(L) > 1d-10 ) THEN
GC_O3_ADJ(L) = 1d0 / GC_O3(L) * O3_PERT_ADJ(L)
ELSE
GC_O3_ADJ(L) = 1d0 / 1d-10 * O3_PERT_ADJ(L)
ENDIF
ENDDO
! dkh debug
!print*, 'O3_HAT_ADJ, O3_PERT_ADJ, GC_O3_ADJ'
!WRITE(6,103) (O3_HAT_ADJ(L), O3_PERT_ADJ(L), GC_O3_ADJ(L),
! & L = LTES, 1, -1 )
103 FORMAT(1X,d14.6,1X,d14.6,1X,d14.6)
! adjoint of interpolation
DO L = 1, LLPAR
GC_O3_NATIVE_ADJ(L) = 0d0
DO LL = 1, LTES
GC_O3_NATIVE_ADJ(L) = GC_O3_NATIVE_ADJ(L)
& + MAP(L,LL) * GC_O3_ADJ(LL)
ENDDO
ENDDO
!WRITE(114,112) ( GC_O3_NATIVE_ADJ(L), L=LLPAR,1,-1)
! mkeller: OMP critical directive needed here
!!$OMP CRITICAL
DO L = 1, LLPAR
! Adjoint of unit conversion
!GC_O3_NATIVE_ADJ(L) = GC_O3_NATIVE_ADJ(L) * 1d6 /
& !( AIRDEN(L,I,J) * XNUMOLAIR )
GC_O3_NATIVE_ADJ(L) = GC_O3_NATIVE_ADJ(L) * TCVV(IDTOX) /
& AD(I,J,L)
! mkeller: OMP critical directive needed here
GC_ADJ_COUNT(I,J,L) = GC_ADJ_COUNT(I,J,L) + 1d0
GC_ADJ_TEMP(I,J,L) = GC_ADJ_TEMP(I,J,L)+GC_O3_NATIVE_ADJ(L)
ENDDO
!!$OMP END CRITICAL
!GC_ADJ_TEMP_COST(I,J) = GC_ADJ_TEMP_COST(I,J) + NEW_COST(NT)
! dkh debug
! mkeller: comment this out for now
!print*, 'GC_O3_NATIVE_ADJ conv '
!WRITE(6,104) (GC_O3_NATIVE_ADJ(L), L = LLPAR, 1, -1 )
104 FORMAT(1X,d14.6)
!WRITE(101,110) ( TES(NT)%PRES(LL), LL=LTES,1,-1)
!WRITE(102,110) ( 1d9 * GC_O3(LL), LL=LTES,1,-1)
!WRITE(103,110) ( 1d9 * TES(NT)%O3(LL), LL=LTES,1,-1)
!WRITE(104,110) ( 1d9 * TES(NT)%PRIOR(LL), LL=LTES,1,-1)
!WRITE(105,110) ( 1d9 * DIFF_V(LL), LL=LTES,1,-1)
!WRITE(106,112) ( FORCE(LL), LL=LTES,1,-1)
!WRITE(107,111) NT, LTES
!WRITE(108,112) ( O3_PERT_ADJ(LL), LL=LTES,1,-1)
!WRITE(109,112) ( GC_O3_ADJ(LL), LL=LTES,1,-1)
!WRITE(110,110) ( 1d9 * EXP(O3_HAT(LL)), LL=LTES,1,-1)
!WRITE(111,110) ( GC_PRES(L), L=LLPAR,1,-1)
!WRITE(112,110) ( 1d9 * GC_O3_NATIVE(L), L=LLPAR,1,-1)
!WRITE(113,110) ( 1d9 * GC_O3(LL), LL=LTES,1,-1)
!WRITE(115,110) ( REAL(TES(NT)%LAT(1)))
110 FORMAT(F18.6,1X)
111 FORMAT(i4,1X,i4,1x)
112 FORMAT(D14.6,1X)
ENDDO ! NT
!!$OMP END PARALLEL DO
DO L=1,LLPAR
DO J=1,JJPAR
DO I=1,IIPAR
IF ( ITS_IN_THE_TROP(I,J,L) ) THEN
JLOOP = JLOP(I,J,L)
IF ( JLOOP > 0 ) THEN
IF(GC_ADJ_COUNT(I,J,L)>0d0) THEN
! Pass adjoint back to adjoint tracer array
! this formulation allows for aggregating the TES retrievals that fall into
! a particular grid box into a super observation. This functionality has been
! disabled for now.
!CSPEC_AFTER_CHEM_ADJ(JLOOP,ID2C(IDO3)) =
& !CSPEC_AFTER_CHEM_ADJ(JLOOP,ID2C(IDO3))
& !+ GC_ADJ_TEMP(I,J,L)/GC_ADJ_COUNT(I,J,L)
STT_ADJ(I,J,L,IDTOX) = STT_ADJ(I,J,L,IDTOX) +
& GC_ADJ_TEMP(I,J,L)/GC_ADJ_COUNT(I,J,L)
ENDIF
ENDIF
ENDIF
ENDDO
! don't bin TES retrievals into a super observation for now.
!IF( MAXVAL(GC_ADJ_COUNT(I,J,:) > 0d0) ) THEN
!COST_FUNC = COST_FUNC +
!& GC_ADJ_TEMP_COST(I,J)/MAXVAL(GC_ADJ_COUNT(I,J,:))
!ENDIF
ENDDO
ENDDO
IF ( FIRST ) FIRST = .FALSE.
! Update cost function
COST_FUNC = COST_FUNC + SUM(NEW_COST(NTSTOP:NTSTART))
print*, ' Updated value of COST_FUNC = ', COST_FUNC
print*, ' TES contribution = ', COST_FUNC - OLD_COST
! Return to calling program
END SUBROUTINE CALC_TES_O3_FORCE
!!------------------------------------------------------------------------------
!
! SUBROUTINE CALC_TES_O3_FORCE_FD( COST_FUNC, PERT, ADJ )
!!
!!******************************************************************************
!! Subroutine CALC_TES_O3_FORCE_FD tests the adjoint of CALC_TES_O3_FORCE
!! (dkh, 05/05/10)
!!
!! Can be driven with:
!! PERT(:) = 1D0
!! CALL CALC_TES_O3_FORCE_FD( COST_FUNC_0, PERT, ADJ )
!! ADJ_SAVE(:) = ADJ(:)
!! print*, 'do3: COST_FUNC_0 = ', COST_FUNC_0
!! DO L = 1, 30
!! PERT(:) = 1D0
!! PERT(L) = 1.1
!! COST_FUNC = 0D0
!! CALL CALC_TES_O3_FORCE_FD( COST_FUNC_1, PERT, ADJ )
!! PERT(L) = 0.9
!! COST_FUNC = 0D0
!! CALL CALC_TES_O3_FORCE_FD( COST_FUNC_2, PERT, ADJ )
!! FD(L) = ( COST_FUNC_1 - COST_FUNC_2 ) / 0.2d0
!! print*, 'do3: FD = ', FD(L), L
!! print*, 'do3: ADJ = ', ADJ_SAVE(L), L
!! print*, 'do3: COST = ', COST_FUNC, L
!! print*, 'do3: FD / ADJ ', FD(L) / ADJ_SAVE(L) , L
!! ENDDO
!!
!!
!!
!!
!! Arguments as Input/Output:
!! ============================================================================
!! (1 ) COST_FUNC (REAL*8) : Cost funciton [unitless]
!!
!!
!! NOTES:
!! (1 ) Updated to GCv8 (dkh, 10/07/09)
!! (1 ) Add more diagnostics. Now read and write doubled O3 (dkh, 11/08/09)
!!******************************************************************************
!!
! ! Reference to f90 modules
! USE ADJ_ARRAYS_MOD, ONLY : STT_ADJ
! USE ADJ_ARRAYS_MOD, ONLY : N_CALC
! USE ADJ_ARRAYS_MOD, ONLY : EXPAND_NAME
! USE ADJ_ARRAYS_MOD, ONLY : O3_PROF_SAV
! USE CHECKPT_MOD, ONLY : CHK_STT
! USE COMODE_MOD, ONLY : CSPEC, JLOP
! USE COMODE_MOD, ONLY : CSPEC_ADJ_FORCE
! USE DAO_MOD, ONLY : AD
! USE DAO_MOD, ONLY : AIRDEN
! USE DAO_MOD, ONLY : BXHEIGHT
! USE DIRECTORY_ADJ_MOD, ONLY : DIAGADJ_DIR
! USE GRID_MOD, ONLY : GET_IJ
! USE PRESSURE_MOD, ONLY : GET_PCENTER, GET_PEDGE
! USE TIME_MOD, ONLY : GET_NYMD, GET_NHMS
! USE TIME_MOD, ONLY : GET_TS_CHEM
! USE TRACER_MOD, ONLY : XNUMOLAIR
! USE TRACERID_MOD, ONLY : IDO3
! USE TROPOPAUSE_MOD, ONLY : ITS_IN_THE_TROP
!
!
!# include "CMN_SIZE" ! Size params
!
! ! Arguments
! REAL*8, INTENT(INOUT) :: COST_FUNC
!
! REAL*8, INTENT(IN) :: PERT(LLPAR)
! REAL*8, INTENT(OUT) :: ADJ(LLPAR)
!
! ! Local variables
! INTEGER :: NTSTART, NTSTOP, NT
! INTEGER :: IIJJ(2), I, J
! INTEGER :: L, LL, LTES
! INTEGER :: JLOOP
! REAL*8 :: GC_PRES(LLPAR)
! REAL*8 :: GC_O3_NATIVE(LLPAR)
! REAL*8 :: GC_O3(MAXLEV)
! REAL*8 :: GC_PSURF
! REAL*8 :: MAP(LLPAR,MAXLEV)
! REAL*8 :: O3_HAT(MAXLEV)
! REAL*8 :: O3_PERT(MAXLEV)
! REAL*8 :: FORCE(MAXLEV)
! REAL*8 :: DIFF(MAXLEV)
! REAL*8 :: NEW_COST(MAXTES)
! REAL*8 :: OLD_COST
! REAL*8, SAVE :: TIME_FRAC(MAXTES)
! INTEGER,SAVE :: NTES
!
! REAL*8 :: GC_O3_NATIVE_ADJ(LLPAR)
! REAL*8 :: O3_HAT_ADJ(MAXLEV)
! REAL*8 :: O3_PERT_ADJ(MAXLEV)
! REAL*8 :: GC_O3_ADJ(MAXLEV)
! REAL*8 :: DIFF_ADJ(MAXLEV)
!
! LOGICAL, SAVE :: FIRST = .TRUE.
! INTEGER :: IOS
! CHARACTER(LEN=255) :: FILENAME
!
!
!
! !=================================================================
! ! CALC_TES_O3_FORCE_FD begins here!
! !=================================================================
!
! print*, ' - CALC_TES_O3_FORCE_FD '
!
! NEW_COST = 0D0
!
! ! Open files for output
! IF ( FIRST ) THEN
! FILENAME = 'pres.NN.m'
! CALL EXPAND_NAME( FILENAME, N_CALC )
! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
! OPEN( 101, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
!
! FILENAME = 'gc_o3.NN.m'
! CALL EXPAND_NAME( FILENAME, N_CALC )
! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
! OPEN( 102, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
!
! FILENAME = 'tes_o3.NN.m'
! CALL EXPAND_NAME( FILENAME, N_CALC )
! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
! OPEN( 103, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
!
! FILENAME = 'apriori.NN.m'
! CALL EXPAND_NAME( FILENAME, N_CALC )
! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
! OPEN( 104, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
!
! FILENAME = 'diff.NN.m'
! CALL EXPAND_NAME( FILENAME, N_CALC )
! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
! OPEN( 105, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
!
! FILENAME = 'force.NN.m'
! CALL EXPAND_NAME( FILENAME, N_CALC )
! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
! OPEN( 106, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
!
! FILENAME = 'nt_ll.NN.m'
! CALL EXPAND_NAME( FILENAME, N_CALC )
! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
! OPEN( 107, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
!
! FILENAME = 'o3_pert_adj.NN.m'
! CALL EXPAND_NAME( FILENAME, N_CALC )
! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
! OPEN( 108, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
!
! FILENAME = 'gc_o3_adj.NN.m'
! CALL EXPAND_NAME( FILENAME, N_CALC )
! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
! OPEN( 109, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
!
! FILENAME = 'exp_o3_hat.NN.m'
! CALL EXPAND_NAME( FILENAME, N_CALC )
! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
! OPEN( 110, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
!
! FILENAME = 'gc_press.NN.m'
! CALL EXPAND_NAME( FILENAME, N_CALC )
! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
! OPEN( 111, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
!
! FILENAME = 'gc_o3_native.NN.m'
! CALL EXPAND_NAME( FILENAME, N_CALC )
! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
! OPEN( 112, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
!
! FILENAME = 'gc_o3_on_tes.NN.m'
! CALL EXPAND_NAME( FILENAME, N_CALC )
! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
! OPEN( 113, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
!
! FILENAME = 'gc_o3_native_adj.NN.m'
! CALL EXPAND_NAME( FILENAME, N_CALC )
! FILENAME = TRIM( DIAGADJ_DIR ) // TRIM( FILENAME )
! OPEN( 114, FILE=TRIM( FILENAME ), STATUS='UNKNOWN',
! & IOSTAT=IOS, FORM='FORMATTED', ACCESS='SEQUENTIAL' )
!
!
! ENDIF
!
! ! Save a value of the cost function first
! OLD_COST = COST_FUNC
!
! ! Check if it is the last hour of a day
!! IF ( GET_NHMS() == 236000 - GET_TS_CHEM() * 100 ) THEN
! IF ( FIRST ) THEN
!
! ! Read the TES O3 file for this day
! CALL READ_TES_O3_OBS( GET_NYMD(), NTES )
!
! ! TIME is YYYYMMDD.frac-of-day. Subtract date and save just time fraction
! TIME_FRAC(1:NTES) = TES(1:NTES)%TIME(1) - GET_NYMD()
!
! FIRST = .FALSE.
! ENDIF
!
!! ! Get the range of TES retrievals for the current hour
!! CALL GET_NT_RANGE( NTES, GET_NHMS(), TIME_FRAC, NTSTART, NTSTOP )
!!
!! IF ( NTSTART == 0 .and. NTSTOP == 0 ) THEN
!!
!! print*, ' No matching TES O3 obs for this hour'
!! RETURN
!! ENDIF
!!
!! print*, ' for hour range: ', GET_NHMS(), TIME_FRAC(NTSTART),
!! & TIME_FRAC(NTSTOP)
!! print*, ' found record range: ', NTSTART, NTSTOP
!
! NTSTART = 1590
! NTSTOP = 1590
!
!! need to update this in order to do i/o with this loop parallel
!!! ! Now do a parallel loop for analyzing data
!!!$OMP PARALLEL DO
!!!$OMP+DEFAULT( SHARED )
!!!$OMP+PRIVATE( NT, MAP, LTES, IIJJ, I, J, L, LL, JLOOP )
!!!$OMP+PRIVATE( GC_PRES, GC_PSURF, GC_O3, DIFF )
!!!$OMP+PRIVATE( GC_O3_NATIVE, O3_PERT, O3_HAT, FORCE )
!!!$OMP+PRIVATE( GC_O3_NATIVE_ADJ, GC_O3_ADJ )
!!!$OMP+PRIVATE( O3_PERT_ADJ, O3_HAT_ADJ )
!!!$OMP+PRIVATE( DIFF_ADJ )
! DO NT = NTSTART, NTSTOP, -1
!
! print*, ' - CALC_TES_O3_FORCE: analyzing record ', NT
!
! ! For safety, initialize these up to LLTES
! GC_O3(:) = 0d0
! MAP(:,:) = 0d0
! O3_HAT_ADJ(:) = 0d0
! FORCE(:) = 0d0
!
!
! ! Copy LTES to make coding a bit cleaner
! LTES = TES(NT)%LTES(1)
!
! ! Get grid box of current record
! IIJJ = GET_IJ( REAL(TES(NT)%LON(1),4), REAL(TES(NT)%LAT(1),4))
! I = IIJJ(1)
! J = IIJJ(2)
!
! print*, 'I,J = ', I, J
!
! ! Get GC pressure levels (mbar)
! DO L = 1, LLPAR
! GC_PRES(L) = GET_PCENTER(I,J,L)
! ENDDO
!
! ! Get GC surface pressure (mbar)
! GC_PSURF = GET_PEDGE(I,J,1)
!
!
! ! Calculate the interpolation weight matrix
! MAP(1:LLPAR,1:LTES)
! & = GET_INTMAP( LLPAR, GC_PRES(:), GC_PSURF,
! & LTES, TES(NT)%PRES(1:LTES), GC_PSURF )
!
!
! ! Get O3 values at native model resolution
! DO L = 1, LLPAR
!
!
! ! check if in trop
! IF ( ITS_IN_THE_TROP(I,J,L) ) THEN
!
! JLOOP = JLOP(I,J,L)
!
! ! get O3 from tropospheric array
! IF ( JLOOP > 0 ) THEN
! GC_O3_NATIVE(L) = CSPEC(JLOOP,IDO3) * PERT(L)
!
! ELSE
!
! ! get O3 from climatology [#/cm2]
! GC_O3_NATIVE(L) = O3_PROF_SAV(I,J,L) /
! & ( BXHEIGHT(I,J,L) * 100d0 )
! !GC_O3_NATIVE(L) = 1d0
! ENDIF
!
! ELSE
!
! ! get O3 from climatology [#/cm2]
! GC_O3_NATIVE(L) = O3_PROF_SAV(I,J,L) /
! & ( BXHEIGHT(I,J,L) * 100d0 )
! !GC_O3_NATIVE(L) = 1d0
!
! ENDIF
!
! ! Convert from #/cm3 to v/v
! GC_O3_NATIVE(L) = GC_O3_NATIVE(L) * 1d6 /
! & ( AIRDEN(L,I,J) * XNUMOLAIR )
!
! ENDDO
!
!
! ! Interpolate GC O3 column to TES grid
! DO LL = 1, LTES
! GC_O3(LL) = 0d0
! DO L = 1, LLPAR
! GC_O3(LL) = GC_O3(LL)
! & + MAP(L,LL) * GC_O3_NATIVE(L)
! ENDDO
! ENDDO
!
! ! dkh debug: compare profiles:
! print*, ' GC_PRES, GC_native_O3 [ppb] '
! WRITE(6,100) (GC_PRES(L), GC_O3_NATIVE(L)*1d9,
! & L = LLPAR, 1, -1 )
! print*, ' TES_PRES, GC_O3 '
! WRITE(6,100) (TES(NT)%PRES(LL),
! & GC_O3(LL)*1d9, LL = LTES, 1, -1 )
! 100 FORMAT(1X,F16.8,1X,F16.8)
!
!
! !--------------------------------------------------------------
! ! Apply TES observation operator
! !
! ! x_hat = x_a + A_k ( x_m - x_a )
! !
! ! where
! ! x_hat = GC modeled column as seen by TES [lnvmr]
! ! x_a = TES apriori column [lnvmr]
! ! x_m = GC modeled column [lnvmr]
! ! A_k = TES averaging kernel
! !--------------------------------------------------------------
!
! ! x_m - x_a
! DO L = 1, LTES
! GC_O3(L) = MAX(GC_O3(L), 1d-10)
! O3_PERT(L) = LOG(GC_O3(L)) - LOG(TES(NT)%PRIOR(L))
! ENDDO
!
! ! x_a + A_k * ( x_m - x_a )
! DO L = 1, LTES
! O3_HAT(L) = 0d0
! DO LL = 1, LTES
! O3_HAT(L) = O3_HAT(L)
! & + TES(NT)%AVG_KERNEL(L,LL) * O3_PERT(LL)
! ENDDO
! O3_HAT(L) = O3_HAT(L) + LOG(TES(NT)%PRIOR(L))
! ENDDO
!
!
! !--------------------------------------------------------------
! ! Calculate cost function, given S is error on ln(vmr)
! ! J = 1/2 [ model - obs ]^T S_{obs}^{-1} [ ln(model - obs ]
! !--------------------------------------------------------------
!
! ! Calculate difference between modeled and observed profile
! DO L = 1, LTES
! IF ( TES(NT)%O3(L) > 0d0 ) THEN
! DIFF(L) = O3_HAT(L) - LOG( TES(NT)%O3(L) )
! ELSE
! DIFF(L) = 0d0
! ENDIF
! ENDDO
!
! ! Calculate 1/2 * DIFF^T * S_{obs}^{-1} * DIFF
! DO L = 1, LTES
! FORCE(L) = 0d0
! DO LL = 1, LTES
! FORCE(L) = FORCE(L) + TES(NT)%S_OER_INV(L,LL) * DIFF(LL)
! ENDDO
! NEW_COST(NT) = NEW_COST(NT) + 0.5d0 * DIFF(L) * FORCE(L)
! ENDDO
!
! ! dkh debug: compare profiles:
! print*, ' TES_PRIOR, O3_HAT, O3_TES [ppb]'
! WRITE(6,090) ( 1d9 * TES(NT)%PRIOR(L),
! & 1d9 * EXP(O3_HAT(L)),
! & 1d9 * TES(NT)%O3(L),
! & L, L = LTES, 1, -1 )
!
! print*, ' TES_PRIOR, O3_HAT, O3_TES [lnvmr], diag(S^-1)'
! WRITE(6,101) ( LOG(TES(NT)%PRIOR(L)), O3_HAT(L),
! & LOG(TES(NT)%O3(L)), TES(NT)%S_OER_INV(L,L),
! & L, L = LTES, 1, -1 )
! 090 FORMAT(1X,F16.8,1X,F16.8,1X,F16.8,1X,i3)
! 101 FORMAT(1X,F16.8,1X,F16.8,1X,F16.8,1X,d14.6,1x,i3)
!
! !--------------------------------------------------------------
! ! Begin adjoint calculations
! !--------------------------------------------------------------
!
! ! dkh debug
! print*, 'DIFF , FORCE '
! WRITE(6,102) (DIFF(L), FORCE(L),
! & L = LTES, 1, -1 )
! 102 FORMAT(1X,d14.6,1X,d14.6)
!
! ! The adjoint forcing is S_{obs}^{-1} * DIFF = FORCE
! DIFF_ADJ(:) = FORCE(:)
!
! !print*, ' FORCE with 1 for sensitivity '
! !print*, ' FORCE with 1 for sensitivity '
! !print*, ' FORCE with 1 for sensitivity '
! !print*, ' FORCE with 1 for sensitivity '
! !ADJ_DIFF(:) = 1d0
! !NEW_COST(NT) = ?? SUM(ABS(LOG(O3_HAT(1:LTES))))
! !print*, ' sumlog =', SUM(ABS(LOG(O3_HAT(:))))
! !print*, ' sumlog =', ABS(LOG(O3_HAT(:)))
!
! ! Adjoint of difference
! DO L = 1, LTES
! IF ( TES(NT)%O3(L) > 0d0 ) THEN
! O3_HAT_ADJ(L) = DIFF_ADJ(L)
! ENDIF
! ENDDO
!
! ! adjoint of TES operator
! DO L = 1, LTES
! O3_PERT_ADJ(L) = 0d0
! DO LL = 1, LTES
! O3_PERT_ADJ(L) = O3_PERT_ADJ(L)
! & + TES(NT)%AVG_KERNEL(LL,L)
! & * O3_HAT_ADJ(LL)
! ENDDO
! ENDDO
!
! ! Adjoint of x_m - x_a
! DO L = 1, LTES
! ! fwd code:
! !GC_O3(L) = MAX(GC_O3(L), 1d-10)
! !O3_PERT(L) = LOG(GC_O3(L)) - LOG(TES(NT)%PRIOR(L))
! ! adj code:
! IF ( GC_O3(L) > 1d-10 ) THEN
! GC_O3_ADJ(L) = 1d0 / GC_O3(L) * O3_PERT_ADJ(L)
! ELSE
! GC_O3_ADJ(L) = 1d0 / 1d-10 * O3_PERT_ADJ(L)
! ENDIF
! ENDDO
!
! ! dkh debug
! print*, 'O3_HAT_ADJ, O3_PERT_ADJ, GC_O3_ADJ'
! WRITE(6,103) (O3_HAT_ADJ(L), O3_PERT_ADJ(L), GC_O3_ADJ(L),
! & L = LTES, 1, -1 )
! 103 FORMAT(1X,d14.6,1X,d14.6,1X,d14.6)
!
! ! adjoint of interpolation
! DO L = 1, LLPAR
! GC_O3_NATIVE_ADJ(L) = 0d0
! DO LL = 1, LTES
! GC_O3_NATIVE_ADJ(L) = GC_O3_NATIVE_ADJ(L)
! & + MAP(L,LL) * GC_O3_ADJ(LL)
! ENDDO
! ENDDO
!
! WRITE(114,112) ( GC_O3_NATIVE_ADJ(L), L=LLPAR,1,-1)
!
! DO L = 1, LLPAR
!
! ! Adjoint of unit conversion
! GC_O3_NATIVE_ADJ(L) = GC_O3_NATIVE_ADJ(L) * 1d6 /
! & ( AIRDEN(L,I,J) * XNUMOLAIR )
!
!
! IF ( ITS_IN_THE_TROP(I,J,L) ) THEN
!
! JLOOP = JLOP(I,J,L)
!
! IF ( JLOOP > 0 ) THEN
!
! ! Pass adjoint back to adjoint tracer array
! CSPEC_ADJ_FORCE(JLOOP,IDO3) =
! & CSPEC_ADJ_FORCE(JLOOP,IDO3) + GC_O3_NATIVE_ADJ(L)
!
! ADJ(L) = GC_O3_NATIVE_ADJ(L) * CSPEC(JLOOP,IDO3)
!
! ENDIF
!
! ENDIF
!
! ENDDO
!
! ! dkh debug
! print*, 'GC_O3_NATIVE_ADJ conv '
! WRITE(6,104) (GC_O3_NATIVE_ADJ(L), L = LLPAR, 1, -1 )
! 104 FORMAT(1X,d14.6)
!
!
! WRITE(101,110) ( TES(NT)%PRES(LL), LL=LTES,1,-1)
! WRITE(102,110) ( 1d9 * GC_O3(LL), LL=LTES,1,-1)
! WRITE(103,110) ( 1d9 * TES(NT)%O3(LL), LL=LTES,1,-1)
! WRITE(104,110) ( 1d9 * TES(NT)%PRIOR(LL), LL=LTES,1,-1)
! WRITE(105,110) ( DIFF(LL), LL=LTES,1,-1)
! WRITE(106,112) ( FORCE(LL), LL=LTES,1,-1)
! WRITE(107,111) NT, LTES
! WRITE(108,112) ( O3_PERT_ADJ(LL), LL=LTES,1,-1)
! WRITE(109,112) ( GC_O3_ADJ(LL), LL=LTES,1,-1)
! WRITE(110,110) ( 1d9 * EXP(O3_HAT(LL)), LL=LTES,1,-1)
! WRITE(111,110) ( GC_PRES(L), L=LLPAR,1,-1)
! WRITE(112,110) ( 1d9 * GC_O3_NATIVE(L), L=LLPAR,1,-1)
! WRITE(113,110) ( 1d9 * GC_O3(LL), LL=LTES,1,-1)
! 110 FORMAT(F18.6,1X)
! 111 FORMAT(i4,1X,i4,1x)
! 112 FORMAT(D14.6,1X)
!
!
! ENDDO ! NT
!!!$OMP END PARALLEL DO
!
! ! Update cost function
! COST_FUNC = SUM(NEW_COST(NTSTOP:NTSTART))
!
! print*, ' Updated value of COST_FUNC = ', COST_FUNC
! print*, ' TES contribution = ', COST_FUNC - OLD_COST
!
! ! Return to calling program
! END SUBROUTINE CALC_TES_O3_FORCE_FD
!
!!------------------------------------------------------------------------------
SUBROUTINE GET_NT_RANGE( NTES, HHMMSS, TIME_FRAC, NTSTART, NTSTOP)
!
!******************************************************************************
! Subroutine GET_NT_RANGE retuns the range of retrieval records for the
! current model hour
!
!
! Arguments as Input:
! ============================================================================
! (1 ) NTES (INTEGER) : Number of TES retrievals in this day
! (2 ) HHMMSS (INTEGER) : Current model time
! (3 ) TIME_FRAC (REAL) : Vector of times (frac-of-day) for the TES retrievals
!
! Arguments as Output:
! ============================================================================
! (1 ) NTSTART (INTEGER) : TES record number at which to start
! (1 ) NTSTOP (INTEGER) : TES record number at which to stop
!
! NOTES:
!
!******************************************************************************
!
! Reference to f90 modules
USE ERROR_MOD, ONLY : ERROR_STOP
USE TIME_MOD, ONLY : YMD_EXTRACT
! Arguments
INTEGER, INTENT(IN) :: NTES
INTEGER, INTENT(IN) :: HHMMSS
REAL*8, INTENT(IN) :: TIME_FRAC(NTES)
INTEGER, INTENT(OUT) :: NTSTART
INTEGER, INTENT(OUT) :: NTSTOP
! Local variables
INTEGER, SAVE :: NTSAVE
LOGICAL :: FOUND_ALL_RECORDS
INTEGER :: NTEST
INTEGER :: HH, MM, SS
REAL*8 :: GC_HH_FRAC
REAL*8 :: H1_FRAC
!=================================================================
! GET_NT_RANGE begins here!
!=================================================================
! Initialize
FOUND_ALL_RECORDS = .FALSE.
NTSTART = 0
NTSTOP = 0
! set NTSAVE to NTES every time we start with a new file
IF ( HHMMSS == 230000 ) NTSAVE = NTES
!print*, ' GET_NT_RANGE for ', HHMMSS
!print*, ' NTSAVE ', NTSAVE
!print*, ' NTES ', NTES
CALL YMD_EXTRACT( HHMMSS, HH, MM, SS )
! Convert HH from hour to fraction of day
GC_HH_FRAC = REAL(HH,8) / 24d0
! one hour as a fraction of day
H1_FRAC = 1d0 / 24d0
! All records have been read already
IF ( NTSAVE == 0 ) THEN
print*, 'All records have been read already '
RETURN
! No records reached yet
ELSEIF ( TIME_FRAC(NTSAVE) + H1_FRAC < GC_HH_FRAC ) THEN
print*, 'No records reached yet'
RETURN
!
ELSEIF ( TIME_FRAC(NTSAVE) + H1_FRAC >= GC_HH_FRAC ) THEN
! Starting record found
NTSTART = NTSAVE
!print*, ' Starting : TIME_FRAC(NTSTART) ',
& !TIME_FRAC(NTSTART), NTSTART
! Now search forward to find stopping record
NTEST = NTSTART
DO WHILE ( FOUND_ALL_RECORDS == .FALSE. )
! Advance to the next record
NTEST = NTEST - 1
! Stop if we reach the earliest available record
IF ( NTEST == 0 ) THEN
NTSTOP = NTEST + 1
FOUND_ALL_RECORDS = .TRUE.
print*, ' Records found '
print*, ' NTSTART, NTSTOP = ', NTSTART, NTSTOP
! Reset NTSAVE
NTSAVE = NTEST
! When the combined test date rounded up to the nearest
! half hour is smaller than the current model date, the
! stopping record has been passed.
ELSEIF ( TIME_FRAC(NTEST) + H1_FRAC < GC_HH_FRAC ) THEN
!print*, ' Testing : TIME_FRAC ',
& !TIME_FRAC(NTEST), NTEST
NTSTOP = NTEST + 1
FOUND_ALL_RECORDS = .TRUE.
print*, ' Records found '
print*, ' NTSTART, NTSTOP = ', NTSTART, NTSTOP
! Reset NTSAVE
NTSAVE = NTEST
ELSE
!print*, ' still looking ', NTEST
ENDIF
ENDDO
ELSE
CALL ERROR_STOP('problem', 'GET_NT_RANGE' )
ENDIF
! Return to calling program
END SUBROUTINE GET_NT_RANGE
!------------------------------------------------------------------------------
FUNCTION GET_INTMAP( LGC_TOP, GC_PRESC, GC_SURFP,
& LTM_TOP, TM_PRESC, TM_SURFP )
* RESULT ( HINTERPZ )
!
!******************************************************************************
! Function GET_INTMAP linearly interpolates column quatities
! based upon the centered (average) pressue levels.
!
! Arguments as Input:
! ============================================================================
! (1 ) LGC_TOP (TYPE) : Description [unit]
! (2 ) GC_PRES (TYPE) : Description [unit]
! (3 ) GC_SURFP(TYPE) : Description [unit]
! (4 ) LTM_TOP (TYPE) : Description [unit]
! (5 ) TM_PRES (TYPE) : Description [unit]
! (6 ) TM_SURFP(TYPE) : Description [unit]
!
! Arguments as Output:
! ============================================================================
! (1 ) HINTERPZ (TYPE) : Description [unit]
!
! NOTES:
! (1 ) Based on the GET_HINTERPZ_2 routine I wrote for read_sciano2_mod.
!
!******************************************************************************
!
! Reference to f90 modules
USE ERROR_MOD, ONLY : ERROR_STOP
USE PRESSURE_MOD, ONLY : GET_BP
! Arguments
INTEGER :: LGC_TOP, LTM_TOP
REAL*8 :: GC_PRESC(LGC_TOP)
REAL*8 :: TM_PRESC(LTM_TOP)
REAL*8 :: GC_SURFP
REAL*8 :: TM_SURFP
! Return value
REAL*8 :: HINTERPZ(LGC_TOP, LTM_TOP)
! Local variables
INTEGER :: LGC, LTM
REAL*8 :: DIFF, DELTA_SURFP
REAL*8 :: LOW, HI
!=================================================================
! GET_HINTERPZ_2 begins here!
!=================================================================
HINTERPZ(:,:) = 0D0
! ! Rescale GC grid according to TM surface pressure
!! p1_A = (a1 + b1 (ps_A - PTOP))
!! p2_A = (a2 + b2 (ps_A - PTOP))
!! p1_B = (a + b (ps_B - PTOP))
!! p2_B = *(a + b (ps_B - PTOP))
!! pc_A = 0.5(a1+a2 +(b1+b2)*(ps_A - PTOP))
!! pc_B = 0.5(a1+a2 +(b1+b2)*(ps_B - PTOP))
!! pc_B - pc_A = 0.5(b1_b2)(ps_B-ps_A)
!! pc_B = 0.5(b1_b2)(ps_B-ps_A) + pc_A
! DELTA_SURFP = 0.5d0 * ( TM_SURFP -GC_SURFP )
!
! DO LGC = 1, LGC_TOP
! GC_PRESC(LGC) = ( GET_BP(LGC) + GET_BP(LGC+1))
! & * DELTA_SURFP + GC_PRESC(LGC)
! IF (GC_PRESC(LGC) < 0) THEN
! CALL ERROR_STOP( 'highly unlikey',
! & 'read_sciano2_mod.f')
! ENDIF
!
! ENDDO
! Loop over each pressure level of TM grid
DO LTM = 1, LTM_TOP
! Find the levels from GC that bracket level LTM
DO LGC = 1, LGC_TOP - 1
LOW = GC_PRESC(LGC+1)
HI = GC_PRESC(LGC)
IF (LGC == 0) HI = TM_SURFP
! Linearly interpolate value on the LTM grid
IF ( TM_PRESC(LTM) <= HI .and.
& TM_PRESC(LTM) > LOW) THEN
DIFF = HI - LOW
HINTERPZ(LGC+1,LTM) = ( HI - TM_PRESC(LTM) ) / DIFF
HINTERPZ(LGC ,LTM) = ( TM_PRESC(LTM) - LOW ) / DIFF
ENDIF
! dkh debug
!print*, 'LGC,LTM,HINT', LGC, LTM, HINTERPZ(LGC,LTM)
ENDDO
ENDDO
! Correct for case where TES pressure is higher than the
! highest GC pressure. In this case, just 1:1 map.
DO LTM = 1, LTM_TOP
IF ( TM_PRESC(LTM) > GC_PRESC(1) ) THEN
HINTERPZ(:,LTM) = 0D0
HINTERPZ(LTM,LTM) = 1D0
ENDIF
ENDDO
! Return to calling program
END FUNCTION GET_INTMAP
!!------------------------------------------------------------------------------
! SUBROUTINE MAKE_O3_FILE( )
!!
!!******************************************************************************
!! Subroutine MAKE_O3_FILE saves O3 profiles that correspond to time and
!! place of TES O3 obs. (dkh, 03/01/09)
!!
!! Module variables as Input:
!! ============================================================================
!! (1 ) O3_SAVE (REAL*8) : O3 profiles [ppmv]
!!
!! NOTES:
!!
!!******************************************************************************
!!
! ! Reference to f90 modules
! USE BPCH2_MOD
! USE DIRECTORY_ADJ_MOD, ONLY : ADJTMP_DIR
! USE ERROR_MOD, ONLY : ERROR_STOP
! USE GRID_MOD, ONLY : GET_XOFFSET, GET_YOFFSET
! USE TIME_MOD, ONLY : EXPAND_DATE
!
!# include "CMN_SIZE" ! Size params
!
! ! Local variables
! INTEGER :: I, J, I0, J0, L, NT
! CHARACTER(LEN=120) :: FILENAME
! REAL*4 :: DAT(1,LLPAR,MAXTES)
! INTEGER, PARAMETER :: IUN = 88
!
! ! For binary punch file, version 2.0
! CHARACTER(LEN=20) :: MODELNAME
! CHARACTER(LEN=40) :: CATEGORY
! CHARACTER(LEN=40) :: UNIT
! CHARACTER(LEN=40) :: RESERVED = ''
! CHARACTER(LEN=80) :: TITLE
! REAL*4 :: LONRES, LATRES
! INTEGER, PARAMETER :: HALFPOLAR = 1
! INTEGER, PARAMETER :: CENTER180 = 1
!
! !=================================================================
! ! MAKE_O3_FILE begins here!
! !=================================================================
!
! FILENAME = TRIM( 'nh3.bpch' )
!
! ! Append data directory prefix
! FILENAME = TRIM( ADJTMP_DIR ) // TRIM( FILENAME )
!
! ! Define variables for BINARY PUNCH FILE OUTPUT
! TITLE = 'O3 profile '
! CATEGORY = 'IJ-AVE-$'
! LONRES = DISIZE
! LATRES = DJSIZE
! UNIT = 'ppmv'
!
! ! Call GET_MODELNAME to return the proper model name for
! ! the given met data being used (bmy, 6/22/00)
! MODELNAME = GET_MODELNAME()
!
! ! Get the nested-grid offsets
! I0 = GET_XOFFSET( GLOBAL=.TRUE. )
! J0 = GET_YOFFSET( GLOBAL=.TRUE. )
!
! !=================================================================
! ! Open the checkpoint file for output -- binary punch format
! !=================================================================
!
!
! WRITE( 6, 100 ) TRIM( FILENAME )
! 100 FORMAT( ' - MAKE_O3_FILE: Writing ', a )
!
! ! Open checkpoint file for output
! CALL OPEN_BPCH2_FOR_WRITE( IUN, FILENAME, TITLE )
!
! ! Temporarily store data in DAT as REAL4
!!$OMP PARALLEL DO
!!$OMP+DEFAULT( SHARED )
!!$OMP+PRIVATE( NT )
! DO NT = 1, MAXTES
!
! DAT(1,:,NT) = REAL(O3_SAVE(:,NT))
!
! ENDDO
!!$OMP END PARALLEL DO
!
! CALL BPCH2( IUN, MODELNAME, LONRES, LATRES,
! & HALFPOLAR, CENTER180, CATEGORY, 1,
! & UNIT, 1d0, 1d0, RESERVED,
! & 1, LLPAR, MAXTES, I0+1,
! & J0+1, 1, DAT )
!
! ! Close file
! CLOSE( IUN )
!
! print*, ' O3_SAVE sum write = ', SUM(O3_SAVE(:,:))
!
! ! Return to calling program
! END SUBROUTINE MAKE_O3_FILE
!
!!------------------------------------------------------------------------------
! SUBROUTINE READ_O3_FILE( )
!!
!!******************************************************************************
!! Subroutine READ_O3_FILE reads the GC modeled O3 profiles that correspond
!! to the TES O3 times and locations. (dkh, 03/01/09)
!!
!! NOTES:
!!
!!******************************************************************************
!!
! ! Reference to F90 modules
! USE BPCH2_MOD, ONLY : READ_BPCH2
! USE DIRECTORY_ADJ_MOD, ONLY : ADJTMP_DIR
!
!
!# include "CMN_SIZE" ! Size parameters
!
! ! Local variables
! REAL*4 :: DAT(1,LLPAR,MAXTES)
! CHARACTER(LEN=255) :: FILENAME
!
! !=================================================================
! ! READ_USA_MASK begins here!
! !=================================================================
!
! ! File name
! FILENAME = TRIM( ADJTMP_DIR ) //
! & 'nh3.bpch'
!
! ! Echo info
! WRITE( 6, 100 ) TRIM( FILENAME )
! 100 FORMAT( ' - READ_O3_FILE: Reading ', a )
!
!
! ! USA mask is stored in the bpch file as #2
! CALL READ_BPCH2( FILENAME, 'IJ-AVE-$', 1,
! & 1d0, 1, LLPAR,
! & MAXTES, DAT, QUIET=.TRUE. )
!
! ! Cast to REAL*8
! O3_SAVE(:,:) = DAT(1,:,:)
!
! print*, ' O3_SAVE sum read = ', SUM(O3_SAVE(:,:))
!
! ! Return to calling program
! END SUBROUTINE READ_O3_FILE
!
!!-----------------------------------------------------------------------------
! FUNCTION GET_DOUBLED_O3( NYMD, NHMS, LON, LAT ) RESULT( O3_DBL )
!!
!!******************************************************************************
!! Subroutine GET_DOUBLED_O3 reads and returns the nh3 profiles from
!! model run with doubled emissions. (dkh, 11/08/09)
!!
!! NOTES:
!!
!!******************************************************************************
!!
! ! Reference to F90 modules
! USE BPCH2_MOD, ONLY : READ_BPCH2
! USE DIRECTORY_MOD, ONLY : DATA_DIR
! USE TIME_MOD, ONLY : EXPAND_DATE
! USE TIME_MOD, ONLY : GET_TAU
!
!
!# include "CMN_SIZE" ! Size parameters
!
! ! Arguments
! INTEGER :: NYMD, NHMS
! REAL*4 :: LON, LAT
!
! ! Function arg
! REAL*8 :: O3_DBL(LLPAR)
!
! ! Local variables
! REAL*4 :: DAT(144,91,20)
! CHARACTER(LEN=255) :: FILENAME
! INTEGER :: IIJJ(2)
!
! !=================================================================
! ! GET_DOUBLED_O3 begins here!
! !=================================================================
!
! ! filename
! FILENAME = 'nh3.YYYYMMDD.hhmm'
!
! ! Expand filename
! CALL EXPAND_DATE( FILENAME, NYMD, NHMS )
!
! ! Full path to file
! FILENAME = TRIM( DATA_DIR ) //
! & 'doubled_nh3/' //
! & TRIM( FILENAME ) //
! & TRIM( '00' )
!
! ! Echo info
! WRITE( 6, 100 ) TRIM( FILENAME )
! 100 FORMAT( ' - GET_DOUBLED_O3: Reading ', a )
!
! ! dkh debug
! print*, ' GET_TAU() = ', GET_TAU()
!
! ! Get data
! CALL READ_BPCH2( FILENAME, 'IJ-AVG-$', 29,
! & GET_TAU(), 144, 91,
! & 20, DAT, QUIET=.FALSE. )
!
! IIJJ = GET_IJ_2x25( LON, LAT )
!
! print*, ' found doubled in I/J = ', IIJJ
!
! ! just the column for the present location, and convert ppb to ppm
! O3_DBL(1:20) = REAL(DAT(IIJJ(1),IIJJ(2),:),8) / 1000d0
! O3_DBL(21:LLPAR) = 0d0
!
! print*, ' O3_DBL = ', O3_DBL
!
! ! Return to calling program
! END FUNCTION GET_DOUBLED_O3
!
!!------------------------------------------------------------------------------
FUNCTION GET_IJ_2x25( LON, LAT ) RESULT ( IIJJ )
!
!******************************************************************************
! Subroutine GET_IJ_2x25 returns I and J index from the 2 x 2.5 grid for a
! LON, LAT coord. (dkh, 11/08/09)
!
!
! Arguments as Input:
! ============================================================================
! (1 ) LON (REAL*8) : Longitude [degrees]
! (2 ) LAT (REAL*8) : Latitude [degrees]
!
! Function result
! ============================================================================
! (1 ) IIJJ(1) (INTEGER) : Long index [none]
! (2 ) IIJJ(2) (INTEGER) : Lati index [none]
!
! NOTES:
!
!******************************************************************************
!
! Reference to f90 modules
USE ERROR_MOD, ONLY : ERROR_STOP
! Arguments
REAL*4 :: LAT, LON
! Return
INTEGER :: I, J, IIJJ(2)
! Local variables
REAL*8 :: TLON, TLAT, DLON, DLAT
REAL*8, PARAMETER :: DISIZE = 2.5d0
REAL*8, PARAMETER :: DJSIZE = 2.0d0
INTEGER, PARAMETER :: IIMAX = 144
INTEGER, PARAMETER :: JJMAX = 91
!=================================================================
! GET_IJ_2x25 begins here!
!=================================================================
TLON = 180d0 + LON + DISIZE
TLAT = 90d0 + LAT + DJSIZE
I = TLON / DISIZE
J = TLAT / DJSIZE
IF ( TLON / DISIZE - REAL(I) >= 0.5d0 ) THEN
I = I + 1
ENDIF
IF ( TLAT / DJSIZE - REAL(J) >= 0.5d0 ) THEN
J = J + 1
ENDIF
! Longitude wraps around
!IF ( I == 73 ) I = 1
IF ( I == ( IIMAX + 1 ) ) I = 1
! Check for impossible values
IF ( I > IIMAX .or. J > JJMAX .or.
& I < 1 .or. J < 1 ) THEN
CALL ERROR_STOP('Error finding grid box', 'GET_IJ_2x25')
ENDIF
IIJJ(1) = I
IIJJ(2) = J
! Return to calling program
END FUNCTION GET_IJ_2x25
!!-----------------------------------------------------------------------------
! SUBROUTINE INIT_TES_O3
!!
!!*****************************************************************************
!! Subroutine INIT_TES_O3 deallocates all module arrays. (dkh, 02/15/09)
!!
!! NOTES:
!!
!!******************************************************************************
!!
! USE ERROR_MOD, ONLY : ALLOC_ERR
!
!# include "CMN_SIZE" ! IIPAR, JJPAR
!
! ! Local variables
! INTEGER :: AS
!
! !=================================================================
! ! INIT_TES_O3 begins here
! !=================================================================
!
! ! dkh debug
! print*, ' INIT_TES_O3'
!
! ALLOCATE( O3_SAVE( LLPAR, MAXTES ), STAT=AS )
! IF ( AS /= 0 ) CALL ALLOC_ERR( 'O3_SAVE' )
! O3_SAVE = 0d0
!
!
! TES( 1 )%NYMD = 20050704
! TES( 2 )%NYMD = 20050704
! TES( 3 )%NYMD = 20050704
! TES( 4 )%NYMD = 20050704
! TES( 5 )%NYMD = 20050704
! TES( 6 )%NYMD = 20050704
! TES( 7 )%NYMD = 20050704
! TES( 8 )%NYMD = 20050704
! TES( 9 )%NYMD = 20050705
! TES( 10 )%NYMD = 20050705
! TES( 11 )%NYMD = 20050705
! TES( 12 )%NYMD = 20050705
! TES( 13 )%NYMD = 20050705
! TES( 14 )%NYMD = 20050705
! TES( 15 )%NYMD = 20050705
! TES( 16 )%NYMD = 20050705
! TES( 17 )%NYMD = 20050705
! TES( 18 )%NYMD = 20050710
! TES( 19 )%NYMD = 20050710
! TES( 20 )%NYMD = 20050710
! TES( 21 )%NYMD = 20050710
! TES( 22 )%NYMD = 20050710
! TES( 23 )%NYMD = 20050710
! TES( 24 )%NYMD = 20050710
! TES( 25 )%NYMD = 20050710
! TES( 26 )%NYMD = 20050710
! TES( 27 )%NYMD = 20050711
! TES( 28 )%NYMD = 20050711
! TES( 29 )%NYMD = 20050711
! TES( 30 )%NYMD = 20050711
! TES( 31 )%NYMD = 20050712
! TES( 32 )%NYMD = 20050712
! TES( 33 )%NYMD = 20050712
! TES( 34 )%NYMD = 20050712
! TES( 35 )%NYMD = 20050712
! TES( 36 )%NYMD = 20050712
! TES( 37 )%NYMD = 20050712
! TES( 38 )%NYMD = 20050712
! TES( 39 )%NYMD = 20050713
! TES( 40 )%NYMD = 20050713
! TES( 41 )%NYMD = 20050713
! TES( 42 )%NYMD = 20050713
! TES( 43 )%NYMD = 20050713
! TES( 44 )%NYMD = 20050713
! TES( 45 )%NYMD = 20050713
! TES( 46 )%NYMD = 20050713
! TES( 47 )%NYMD = 20050713
! TES( 48 )%NYMD = 20050714
! TES( 49 )%NYMD = 20050714
! TES( 50 )%NYMD = 20050714
! TES( 51 )%NYMD = 20050714
! TES( 52 )%NYMD = 20050714
! TES( 53 )%NYMD = 20050714
! TES( 54 )%NYMD = 20050714
! TES( 55 )%NYMD = 20050714
! TES( 56 )%NYMD = 20050715
! TES( 57 )%NYMD = 20050715
! TES( 58 )%NYMD = 20050715
! TES( 59 )%NYMD = 20050715
! TES( 60 )%NYMD = 20050715
! TES( 61 )%NYMD = 20050715
! TES( 62 )%NYMD = 20050715
! TES( 63 )%NYMD = 20050715
! TES( 64 )%NYMD = 20050715
! TES( 65 )%NYMD = 20050716
! TES( 66 )%NYMD = 20050717
! TES( 67 )%NYMD = 20050717
! TES( 68 )%NYMD = 20050717
! TES( 69 )%NYMD = 20050717
! TES( 70 )%NYMD = 20050717
! TES( 71 )%NYMD = 20050717
! TES( 72 )%NYMD = 20050717
! TES( 73 )%NYMD = 20050717
! TES( 74 )%NYMD = 20050717
! TES( 75 )%NYMD = 20050718
! TES( 76 )%NYMD = 20050718
! TES( 77 )%NYMD = 20050718
! TES( 78 )%NYMD = 20050718
! TES( 79 )%NYMD = 20050719
! TES( 80 )%NYMD = 20050719
! TES( 81 )%NYMD = 20050719
! TES( 82 )%NYMD = 20050719
! TES( 83 )%NYMD = 20050719
! TES( 84 )%NYMD = 20050719
! TES( 85 )%NYMD = 20050719
! TES( 86 )%NYMD = 20050719
! TES( 87 )%NYMD = 20050719
!
! TES( 1 )%NHMS = 202000
! TES( 2 )%NHMS = 202100
! TES( 3 )%NHMS = 202100
! TES( 4 )%NHMS = 202100
! TES( 5 )%NHMS = 202200
! TES( 6 )%NHMS = 202300
! TES( 7 )%NHMS = 202300
! TES( 8 )%NHMS = 202400
! TES( 9 )%NHMS = 082100
! TES( 10 )%NHMS = 082100
! TES( 11 )%NHMS = 082200
! TES( 12 )%NHMS = 082200
! TES( 13 )%NHMS = 082300
! TES( 14 )%NHMS = 082300
! TES( 15 )%NHMS = 082400
! TES( 16 )%NHMS = 082400
! TES( 17 )%NHMS = 082500
! TES( 18 )%NHMS = 194300
! TES( 19 )%NHMS = 194300
! TES( 20 )%NHMS = 194400
! TES( 21 )%NHMS = 194400
! TES( 22 )%NHMS = 194500
! TES( 23 )%NHMS = 194500
! TES( 24 )%NHMS = 194600
! TES( 25 )%NHMS = 194600
! TES( 26 )%NHMS = 194700
! TES( 27 )%NHMS = 092300
! TES( 28 )%NHMS = 092300
! TES( 29 )%NHMS = 092400
! TES( 30 )%NHMS = 092400
! TES( 31 )%NHMS = 193000
! TES( 32 )%NHMS = 193100
! TES( 33 )%NHMS = 193100
! TES( 34 )%NHMS = 193200
! TES( 35 )%NHMS = 193300
! TES( 36 )%NHMS = 193300
! TES( 37 )%NHMS = 193400
! TES( 38 )%NHMS = 193400
! TES( 39 )%NHMS = 091000
! TES( 40 )%NHMS = 091100
! TES( 41 )%NHMS = 091100
! TES( 42 )%NHMS = 091200
! TES( 43 )%NHMS = 091200
! TES( 44 )%NHMS = 091200
! TES( 45 )%NHMS = 091300
! TES( 46 )%NHMS = 091300
! TES( 47 )%NHMS = 091400
! TES( 48 )%NHMS = 191900
! TES( 49 )%NHMS = 191900
! TES( 50 )%NHMS = 191900
! TES( 51 )%NHMS = 192000
! TES( 52 )%NHMS = 192000
! TES( 53 )%NHMS = 192100
! TES( 54 )%NHMS = 192100
! TES( 55 )%NHMS = 192200
! TES( 56 )%NHMS = 085800
! TES( 57 )%NHMS = 085800
! TES( 58 )%NHMS = 085900
! TES( 59 )%NHMS = 085900
! TES( 60 )%NHMS = 090000
! TES( 61 )%NHMS = 090000
! TES( 62 )%NHMS = 090100
! TES( 63 )%NHMS = 090100
! TES( 64 )%NHMS = 090100
! TES( 65 )%NHMS = 190900
! TES( 66 )%NHMS = 084500
! TES( 67 )%NHMS = 084600
! TES( 68 )%NHMS = 084600
! TES( 69 )%NHMS = 084700
! TES( 70 )%NHMS = 084700
! TES( 71 )%NHMS = 084800
! TES( 72 )%NHMS = 084800
! TES( 73 )%NHMS = 084900
! TES( 74 )%NHMS = 084900
! TES( 75 )%NHMS = 203200
! TES( 76 )%NHMS = 203300
! TES( 77 )%NHMS = 203300
! TES( 78 )%NHMS = 203400
! TES( 79 )%NHMS = 083300
! TES( 80 )%NHMS = 083400
! TES( 81 )%NHMS = 083400
! TES( 82 )%NHMS = 083500
! TES( 83 )%NHMS = 083500
! TES( 84 )%NHMS = 083500
! TES( 85 )%NHMS = 083600
! TES( 86 )%NHMS = 083600
! TES( 87 )%NHMS = 083700
!
! TES( 1 )%LAT = 31.29
! TES( 2 )%LAT = 33
! TES( 3 )%LAT = 34.64
! TES( 4 )%LAT = 36.2
! TES( 5 )%LAT = 37.91
! TES( 6 )%LAT = 41.1
! TES( 7 )%LAT = 42.8
! TES( 8 )%LAT = 44.43
! TES( 9 )%LAT = 43.54
! TES( 10 )%LAT = 41.84
! TES( 11 )%LAT = 40.2
! TES( 12 )%LAT = 38.65
! TES( 13 )%LAT = 36.94
! TES( 14 )%LAT = 35.3
! TES( 15 )%LAT = 33.74
! TES( 16 )%LAT = 32.03
! TES( 17 )%LAT = 30.39
! TES( 18 )%LAT = 31.28
! TES( 19 )%LAT = 32.99
! TES( 20 )%LAT = 34.63
! TES( 21 )%LAT = 36.19
! TES( 22 )%LAT = 37.9
! TES( 23 )%LAT = 39.53
! TES( 24 )%LAT = 41.09
! TES( 25 )%LAT = 42.8
! TES( 26 )%LAT = 44.42
! TES( 27 )%LAT = 43.55
! TES( 28 )%LAT = 41.85
! TES( 29 )%LAT = 40.22
! TES( 30 )%LAT = 38.66
! TES( 31 )%LAT = 31.28
! TES( 32 )%LAT = 32.99
! TES( 33 )%LAT = 34.63
! TES( 34 )%LAT = 36.19
! TES( 35 )%LAT = 39.53
! TES( 36 )%LAT = 41.09
! TES( 37 )%LAT = 42.79
! TES( 38 )%LAT = 44.42
! TES( 39 )%LAT = 43.55
! TES( 40 )%LAT = 41.85
! TES( 41 )%LAT = 40.22
! TES( 42 )%LAT = 38.66
! TES( 43 )%LAT = 36.96
! TES( 44 )%LAT = 35.32
! TES( 45 )%LAT = 33.76
! TES( 46 )%LAT = 32.04
! TES( 47 )%LAT = 30.4
! TES( 48 )%LAT = 32.99
! TES( 49 )%LAT = 34.63
! TES( 50 )%LAT = 36.2
! TES( 51 )%LAT = 37.9
! TES( 52 )%LAT = 39.54
! TES( 53 )%LAT = 41.1
! TES( 54 )%LAT = 42.8
! TES( 55 )%LAT = 44.42
! TES( 56 )%LAT = 43.55
! TES( 57 )%LAT = 41.85
! TES( 58 )%LAT = 40.22
! TES( 59 )%LAT = 38.66
! TES( 60 )%LAT = 36.95
! TES( 61 )%LAT = 35.31
! TES( 62 )%LAT = 33.75
! TES( 63 )%LAT = 32.04
! TES( 64 )%LAT = 30.4
! TES( 65 )%LAT = 44.4
! TES( 66 )%LAT = 43.59
! TES( 67 )%LAT = 41.89
! TES( 68 )%LAT = 40.26
! TES( 69 )%LAT = 38.7
! TES( 70 )%LAT = 37
! TES( 71 )%LAT = 35.36
! TES( 72 )%LAT = 33.8
! TES( 73 )%LAT = 32.09
! TES( 74 )%LAT = 30.45
! TES( 75 )%LAT = 31.27
! TES( 76 )%LAT = 32.98
! TES( 77 )%LAT = 34.62
! TES( 78 )%LAT = 36.18
! TES( 79 )%LAT = 43.58
! TES( 80 )%LAT = 41.88
! TES( 81 )%LAT = 40.25
! TES( 82 )%LAT = 38.69
! TES( 83 )%LAT = 36.98
! TES( 84 )%LAT = 35.34
! TES( 85 )%LAT = 33.78
! TES( 86 )%LAT = 32.07
! TES( 87 )%LAT = 30.43
!
! TES( 1 )%LON = -105.13
! TES( 2 )%LON = -105.6
! TES( 3 )%LON = -106.05
! TES( 4 )%LON = -106.5
! TES( 5 )%LON = -107
! TES( 6 )%LON = -108
! TES( 7 )%LON = -108.57
! TES( 8 )%LON = -109.13
! TES( 9 )%LON = -92.52
! TES( 10 )%LON = -93.09
! TES( 11 )%LON = -93.62
! TES( 12 )%LON = -94.11
! TES( 13 )%LON = -94.62
! TES( 14 )%LON = -95.09
! TES( 15 )%LON = -95.53
! TES( 16 )%LON = -96
! TES( 17 )%LON = -96.44
! TES( 18 )%LON = -95.84
! TES( 19 )%LON = -96.3
! TES( 20 )%LON = -96.76
! TES( 21 )%LON = -97.2
! TES( 22 )%LON = -97.71
! TES( 23 )%LON = -98.21
! TES( 24 )%LON = -98.71
! TES( 25 )%LON = -99.27
! TES( 26 )%LON = -99.83
! TES( 27 )%LON = -107.94
! TES( 28 )%LON = -108.51
! TES( 29 )%LON = -109.04
! TES( 30 )%LON = -109.53
! TES( 31 )%LON = -92.74
! TES( 32 )%LON = -93.2
! TES( 33 )%LON = -93.66
! TES( 34 )%LON = -94.11
! TES( 35 )%LON = -95.11
! TES( 36 )%LON = -95.61
! TES( 37 )%LON = -96.17
! TES( 38 )%LON = -96.73
! TES( 39 )%LON = -104.84
! TES( 40 )%LON = -105.41
! TES( 41 )%LON = -105.94
! TES( 42 )%LON = -106.43
! TES( 43 )%LON = -106.94
! TES( 44 )%LON = -107.42
! TES( 45 )%LON = -107.86
! TES( 46 )%LON = -108.33
! TES( 47 )%LON = -108.76
! TES( 48 )%LON = -90.1
! TES( 49 )%LON = -90.56
! TES( 50 )%LON = -91.01
! TES( 51 )%LON = -91.51
! TES( 52 )%LON = -92.01
! TES( 53 )%LON = -92.51
! TES( 54 )%LON = -93.07
! TES( 55 )%LON = -93.64
! TES( 56 )%LON = -101.74
! TES( 57 )%LON = -102.32
! TES( 58 )%LON = -102.84
! TES( 59 )%LON = -103.33
! TES( 60 )%LON = -103.84
! TES( 61 )%LON = -104.32
! TES( 62 )%LON = -104.76
! TES( 63 )%LON = -105.23
! TES( 64 )%LON = -105.67
! TES( 65 )%LON = -90.54
! TES( 66 )%LON = -98.64
! TES( 67 )%LON = -99.22
! TES( 68 )%LON = -99.75
! TES( 69 )%LON = -100.23
! TES( 70 )%LON = -100.75
! TES( 71 )%LON = -101.22
! TES( 72 )%LON = -101.67
! TES( 73 )%LON = -102.13
! TES( 74 )%LON = -102.57
! TES( 75 )%LON = -108.19
! TES( 76 )%LON = -108.65
! TES( 77 )%LON = -109.11
! TES( 78 )%LON = -109.55
! TES( 79 )%LON = -95.57
! TES( 80 )%LON = -96.14
! TES( 81 )%LON = -96.67
! TES( 82 )%LON = -97.16
! TES( 83 )%LON = -97.67
! TES( 84 )%LON = -98.15
! TES( 85 )%LON = -98.59
! TES( 86 )%LON = -99.06
! TES( 87 )%LON = -99.49
!
! TES( 1 )%FILENAME = TRIM('retv_vars.02945_0457_002.cdf')
! TES( 2 )%FILENAME = TRIM('retv_vars.02945_0457_003.cdf')
! TES( 3 )%FILENAME = TRIM('retv_vars.02945_0457_004.cdf')
! TES( 4 )%FILENAME = TRIM('retv_vars.02945_0458_002.cdf')
! TES( 5 )%FILENAME = TRIM('retv_vars.02945_0458_003.cdf')
! TES( 6 )%FILENAME = TRIM('retv_vars.02945_0459_002.cdf')
! TES( 7 )%FILENAME = TRIM('retv_vars.02945_0459_003.cdf')
! TES( 8 )%FILENAME = TRIM('retv_vars.02945_0459_004.cdf')
! TES( 9 )%FILENAME = TRIM('retv_vars.02945_0982_002.cdf')
! TES( 10 )%FILENAME = TRIM('retv_vars.02945_0982_003.cdf')
! TES( 11 )%FILENAME = TRIM('retv_vars.02945_0982_004.cdf')
! TES( 12 )%FILENAME = TRIM('retv_vars.02945_0983_002.cdf')
! TES( 13 )%FILENAME = TRIM('retv_vars.02945_0983_003.cdf')
! TES( 14 )%FILENAME = TRIM('retv_vars.02945_0983_004.cdf')
! TES( 15 )%FILENAME = TRIM('retv_vars.02945_0984_002.cdf')
! TES( 16 )%FILENAME = TRIM('retv_vars.02945_0984_003.cdf')
! TES( 17 )%FILENAME = TRIM('retv_vars.02945_0984_004.cdf')
! TES( 18 )%FILENAME = TRIM('retv_vars.02956_0457_002.cdf')
! TES( 19 )%FILENAME = TRIM('retv_vars.02956_0457_003.cdf')
! TES( 20 )%FILENAME = TRIM('retv_vars.02956_0457_004.cdf')
! TES( 21 )%FILENAME = TRIM('retv_vars.02956_0458_002.cdf')
! TES( 22 )%FILENAME = TRIM('retv_vars.02956_0458_003.cdf')
! TES( 23 )%FILENAME = TRIM('retv_vars.02956_0458_004.cdf')
! TES( 24 )%FILENAME = TRIM('retv_vars.02956_0459_002.cdf')
! TES( 25 )%FILENAME = TRIM('retv_vars.02956_0459_003.cdf')
! TES( 26 )%FILENAME = TRIM('retv_vars.02956_0459_004.cdf')
! TES( 27 )%FILENAME = TRIM('retv_vars.02956_1054_002.cdf')
! TES( 28 )%FILENAME = TRIM('retv_vars.02956_1054_003.cdf')
! TES( 29 )%FILENAME = TRIM('retv_vars.02956_1054_004.cdf')
! TES( 30 )%FILENAME = TRIM('retv_vars.02956_1055_002.cdf')
! TES( 31 )%FILENAME = TRIM('retv_vars.02960_0457_002.cdf')
! TES( 32 )%FILENAME = TRIM('retv_vars.02960_0457_003.cdf')
! TES( 33 )%FILENAME = TRIM('retv_vars.02960_0457_004.cdf')
! TES( 34 )%FILENAME = TRIM('retv_vars.02960_0458_002.cdf')
! TES( 35 )%FILENAME = TRIM('retv_vars.02960_0458_004.cdf')
! TES( 36 )%FILENAME = TRIM('retv_vars.02960_0459_002.cdf')
! TES( 37 )%FILENAME = TRIM('retv_vars.02960_0459_003.cdf')
! TES( 38 )%FILENAME = TRIM('retv_vars.02960_0459_004.cdf')
! TES( 39 )%FILENAME = TRIM('retv_vars.02960_1054_002.cdf')
! TES( 40 )%FILENAME = TRIM('retv_vars.02960_1054_003.cdf')
! TES( 41 )%FILENAME = TRIM('retv_vars.02960_1054_004.cdf')
! TES( 42 )%FILENAME = TRIM('retv_vars.02960_1055_002.cdf')
! TES( 43 )%FILENAME = TRIM('retv_vars.02960_1055_003.cdf')
! TES( 44 )%FILENAME = TRIM('retv_vars.02960_1055_004.cdf')
! TES( 45 )%FILENAME = TRIM('retv_vars.02960_1056_002.cdf')
! TES( 46 )%FILENAME = TRIM('retv_vars.02960_1056_003.cdf')
! TES( 47 )%FILENAME = TRIM('retv_vars.02960_1056_004.cdf')
! TES( 48 )%FILENAME = TRIM('retv_vars.02963_0457_003.cdf')
! TES( 49 )%FILENAME = TRIM('retv_vars.02963_0457_004.cdf')
! TES( 50 )%FILENAME = TRIM('retv_vars.02963_0458_002.cdf')
! TES( 51 )%FILENAME = TRIM('retv_vars.02963_0458_003.cdf')
! TES( 52 )%FILENAME = TRIM('retv_vars.02963_0458_004.cdf')
! TES( 53 )%FILENAME = TRIM('retv_vars.02963_0459_002.cdf')
! TES( 54 )%FILENAME = TRIM('retv_vars.02963_0459_003.cdf')
! TES( 55 )%FILENAME = TRIM('retv_vars.02963_0459_004.cdf')
! TES( 56 )%FILENAME = TRIM('retv_vars.02963_1054_002.cdf')
! TES( 57 )%FILENAME = TRIM('retv_vars.02963_1054_003.cdf')
! TES( 58 )%FILENAME = TRIM('retv_vars.02963_1054_004.cdf')
! TES( 59 )%FILENAME = TRIM('retv_vars.02963_1055_002.cdf')
! TES( 60 )%FILENAME = TRIM('retv_vars.02963_1055_003.cdf')
! TES( 61 )%FILENAME = TRIM('retv_vars.02963_1055_004.cdf')
! TES( 62 )%FILENAME = TRIM('retv_vars.02963_1056_002.cdf')
! TES( 63 )%FILENAME = TRIM('retv_vars.02963_1056_003.cdf')
! TES( 64 )%FILENAME = TRIM('retv_vars.02963_1056_004.cdf')
! TES( 65 )%FILENAME = TRIM('retv_vars.02967_0459_004.cdf')
! TES( 66 )%FILENAME = TRIM('retv_vars.02967_1054_002.cdf')
! TES( 67 )%FILENAME = TRIM('retv_vars.02967_1054_003.cdf')
! TES( 68 )%FILENAME = TRIM('retv_vars.02967_1054_004.cdf')
! TES( 69 )%FILENAME = TRIM('retv_vars.02967_1055_002.cdf')
! TES( 70 )%FILENAME = TRIM('retv_vars.02967_1055_003.cdf')
! TES( 71 )%FILENAME = TRIM('retv_vars.02967_1055_004.cdf')
! TES( 72 )%FILENAME = TRIM('retv_vars.02967_1056_002.cdf')
! TES( 73 )%FILENAME = TRIM('retv_vars.02967_1056_003.cdf')
! TES( 74 )%FILENAME = TRIM('retv_vars.02967_1056_004.cdf')
! TES( 75 )%FILENAME = TRIM('retv_vars.02971_0457_002.cdf')
! TES( 76 )%FILENAME = TRIM('retv_vars.02971_0457_003.cdf')
! TES( 77 )%FILENAME = TRIM('retv_vars.02971_0457_004.cdf')
! TES( 78 )%FILENAME = TRIM('retv_vars.02971_0458_002.cdf')
! TES( 79 )%FILENAME = TRIM('retv_vars.02971_0982_002.cdf')
! TES( 80 )%FILENAME = TRIM('retv_vars.02971_0982_003.cdf')
! TES( 81 )%FILENAME = TRIM('retv_vars.02971_0982_004.cdf')
! TES( 82 )%FILENAME = TRIM('retv_vars.02971_0983_002.cdf')
! TES( 83 )%FILENAME = TRIM('retv_vars.02971_0983_003.cdf')
! TES( 84 )%FILENAME = TRIM('retv_vars.02971_0983_004.cdf')
! TES( 85 )%FILENAME = TRIM('retv_vars.02971_0984_002.cdf')
! TES( 86 )%FILENAME = TRIM('retv_vars.02971_0984_003.cdf')
! TES( 87 )%FILENAME = TRIM('retv_vars.02971_0984_004.cdf')
!
! ! Return to calling program
! END SUBROUTINE INIT_TES_O3
!!------------------------------------------------------------------------------
!
! SUBROUTINE CLEANUP_TES_O3
!!
!!*****************************************************************************
!! Subroutine CLEANUP_TES_O3 deallocates all module arrays. (dkh, 02/15/09)
!!
!! NOTES:
!!
!!******************************************************************************
!!
!
! IF ( ALLOCATED( O3_SAVE ) ) DEALLOCATE( O3_SAVE )
!
!
! ! Return to calling program
! END SUBROUTINE CLEANUP_TES_O3
!!------------------------------------------------------------------------------
!------------------------------------------------------------------------------
SUBROUTINE SVD(A,N,U,S,VT)
!
!******************************************************************************
! Subroutine SVD is a driver for the LAPACK SVD routine DGESVD. (dkh, 05/04/10)
!
!
! Arguments as Input:
! ============================================================================
! (1 ) A (REAL*8) : N x N matrix to decompose
! (2 ) N (INTEGER) : N is dimension of A
!
! Arguments as Output:
! ============================================================================
! (1 ) U (REAL*8) : Array of left singular vectors
! (2 ) S (REAL*8) : Vector of singular values
! (3 ) VT (REAL*8) : Array of right singular vectors, TRANSPOSED
!
!
! NOTES:
!
* Copyright (C) 2009-2010 Intel Corporation. All Rights Reserved.
* The information and material ("Material") provided below is owned by Intel
* Corporation or its suppliers or licensors, and title to such Material remains
* with Intel Corporation or its suppliers or licensors. The Material contains
* proprietary information of Intel or its suppliers and licensors. The Material
* is protected by worldwide copyright laws and treaty provisions. No part of
* the Material may be copied, reproduced, published, uploaded, posted,
* transmitted, or distributed in any way without Intel's prior express written
* permission. No license under any patent, copyright or other intellectual
* property rights in the Material is granted to or conferred upon you, either
* expressly, by implication, inducement, estoppel or otherwise. Any license
* under such intellectual property rights must be express and approved by Intel
* in writing.
* =============================================================================
*
* DGESVD Example.
* ==============
*
* Program computes the singular value decomposition of a general
* rectangular matrix A:
*
* 8.79 9.93 9.83 5.45 3.16
* 6.11 6.91 5.04 -0.27 7.98
* -9.15 -7.93 4.86 4.85 3.01
* 9.57 1.64 8.83 0.74 5.80
* -3.49 4.02 9.80 10.00 4.27
* 9.84 0.15 -8.99 -6.02 -5.31
*
* Description.
* ============
*
* The routine computes the singular value decomposition (SVD) of a real
* m-by-n matrix A, optionally computing the left and/or right singular
* vectors. The SVD is written as
*
* A = U*SIGMA*VT
*
* where SIGMA is an m-by-n matrix which is zero except for its min(m,n)
* diagonal elements, U is an m-by-m orthogonal matrix and VT (V transposed)
* is an n-by-n orthogonal matrix. The diagonal elements of SIGMA
* are the singular values of A; they are real and non-negative, and are
* returned in descending order. The first min(m, n) columns of U and V are
* the left and right singular vectors of A.
*
* Note that the routine returns VT, not V.
*
* Example Program Results.
* ========================
*
* DGESVD Example Program Results
*
* Singular values
* 27.47 22.64 8.56 5.99 2.01
*
* Left singular vectors (stored columnwise)
* -0.59 0.26 0.36 0.31 0.23
* -0.40 0.24 -0.22 -0.75 -0.36
* -0.03 -0.60 -0.45 0.23 -0.31
* -0.43 0.24 -0.69 0.33 0.16
* -0.47 -0.35 0.39 0.16 -0.52
* 0.29 0.58 -0.02 0.38 -0.65
*
* Right singular vectors (stored rowwise)
* -0.25 -0.40 -0.69 -0.37 -0.41
* 0.81 0.36 -0.25 -0.37 -0.10
* -0.26 0.70 -0.22 0.39 -0.49
* 0.40 -0.45 0.25 0.43 -0.62
* -0.22 0.14 0.59 -0.63 -0.44
* =============================================================================
!******************************************************************************
!
! Arguements
INTEGER,INTENT(IN) :: N
REAL*8, INTENT(IN) :: A(N,N)
REAL*8, INTENT(OUT) :: U(N,N)
REAL*8, INTENT(OUT) :: S(N)
REAL*8, INTENT(OUT) :: VT(N,N)
! Local variables
INTEGER, PARAMETER :: LWMAX = MAXLEV * 35
INTEGER :: INFO, LWORK
DOUBLE PRECISION :: WORK( LWMAX )
* .. External Subroutines ..
EXTERNAL :: DGESVD
* .. Intrinsic Functions ..
INTRINSIC :: INT, MIN
!=================================================================
! SVD begins here!
!=================================================================
* .. Executable Statements ..
!WRITE(*,*)'DGESVD Example Program Results'
*
* Query the optimal workspace.
*
LWORK = -1
CALL DGESVD( 'All', 'All', N, N, A, N, S, U, N, VT, N,
$ WORK, LWORK, INFO )
LWORK = MIN( LWMAX, INT( WORK( 1 ) ) )
*
* Compute SVD.
*
CALL DGESVD( 'All', 'All', N, N, A, N, S, U, N, VT, N,
$ WORK, LWORK, INFO )
*
* Check for convergence.
*
IF( INFO.GT.0 ) THEN
WRITE(*,*)'The algorithm computing SVD failed to converge.'
STOP
END IF
! Uncomment the following to print out singlular values, vectors (dkh, 05/04/10)
!!
!! Print singular values.
!!
! CALL PRINT_MATRIX( 'Singular values', 1, N, S, 1 )
!!
!! Print left singular vectors.
!!
! CALL PRINT_MATRIX( 'Left singular vectors (stored columnwise)',
! $ N, N, U, N )
!!
!! Print right singular vectors.
!!
! CALL PRINT_MATRIX( 'Right singular vectors (stored rowwise)',
! $ N, N, VT, N )
! Return to calling program
END SUBROUTINE SVD
!------------------------------------------------------------------------------
SUBROUTINE DGESVD_EXAMPLE
* .. Parameters ..
INTEGER M, N
PARAMETER ( M = 6, N = 5 )
INTEGER LDA, LDU, LDVT
PARAMETER ( LDA = M, LDU = M, LDVT = N )
INTEGER LWMAX
PARAMETER ( LWMAX = 1000 )
*
* .. Local Scalars ..
INTEGER INFO, LWORK
*
* .. Local Arrays ..
DOUBLE PRECISION A( LDA, N ), U( LDU, M ), VT( LDVT, N ), S( N ),
$ WORK( LWMAX )
DATA A/
$ 8.79, 6.11,-9.15, 9.57,-3.49, 9.84,
$ 9.93, 6.91,-7.93, 1.64, 4.02, 0.15,
$ 9.83, 5.04, 4.86, 8.83, 9.80,-8.99,
$ 5.45,-0.27, 4.85, 0.74,10.00,-6.02,
$ 3.16, 7.98, 3.01, 5.80, 4.27,-5.31
$ /
*
* .. External Subroutines ..
EXTERNAL DGESVD
!EXTERNAL PRINT_MATRIX
*
* .. Intrinsic Functions ..
INTRINSIC INT, MIN
*
* .. Executable Statements ..
WRITE(*,*)'DGESVD Example Program Results'
*
* Query the optimal workspace.
*
LWORK = -1
CALL DGESVD( 'All', 'All', M, N, A, LDA, S, U, LDU, VT, LDVT,
$ WORK, LWORK, INFO )
LWORK = MIN( LWMAX, INT( WORK( 1 ) ) )
*
* Compute SVD.
*
CALL DGESVD( 'All', 'All', M, N, A, LDA, S, U, LDU, VT, LDVT,
$ WORK, LWORK, INFO )
*
* Check for convergence.
*
IF( INFO.GT.0 ) THEN
WRITE(*,*)'The algorithm computing SVD failed to converge.'
STOP
END IF
*
* Print singular values.
*
CALL PRINT_MATRIX( 'Singular values', 1, N, S, 1 )
*
* Print left singular vectors.
*
CALL PRINT_MATRIX( 'Left singular vectors (stored columnwise)',
$ M, N, U, LDU )
*
* Print right singular vectors.
*
CALL PRINT_MATRIX( 'Right singular vectors (stored rowwise)',
$ N, N, VT, LDVT )
*
* End of DGESVD Example.
END SUBROUTINE DGESVD_EXAMPLE
!------------------------------------------------------------------------------
*
* Auxiliary routine: printing a matrix.
*
SUBROUTINE PRINT_MATRIX( DESC, M, N, A, LDA )
CHARACTER*(*) DESC
INTEGER M, N, LDA
DOUBLE PRECISION A( LDA, * )
*
INTEGER I, J
*
WRITE(*,*)
WRITE(*,*) DESC
DO I = 1, M
WRITE(*,9998) ( A( I, J ), J = 1, N )
END DO
*
! Change format of output (dkh, 05/04/10)
! 9998 FORMAT( 11(:,1X,F6.2) )
9998 FORMAT( 11(:,1X,E14.8) )
RETURN
END SUBROUTINE PRINT_MATRIX
!------------------------------------------------------------------------------
SUBROUTINE MAKE_TES_BIAS_FILE_HDF5(FILE_ID)
USE HDF5
USE GRID_MOD, ONLY : GET_XMID, GET_YMID
USE DIRECTORY_ADJ_MOD, ONLY : OPTDATA_DIR
USE ADJ_ARRAYS_MOD, ONLY : N_CALC
USE ADJ_ARRAYS_MOD, ONLY : EXPAND_NAME
INTEGER(HID_T) :: FILE_ID
CHARACTER(LEN=255) :: LON_NAME, LAT_NAME, LEV_NAME
CHARACTER(LEN=255) :: TES_O3_NAME
CHARACTER(LEN=255) :: TES_GC_O3_NAME
CHARACTER(LEN=255) :: TES_BIAS_NAME
CHARACTER(LEN=255) :: TES_COUNT_NAME
CHARACTER(LEN=255) :: LON_RAW_NAME, LAT_RAW_NAME, TIME_RAW_NAME
CHARACTER(LEN=255) :: TES_O3_RAW_NAME, TES_GC_O3_RAW_NAME
CHARACTER(LEN=255) :: TES_O3_LONGNAME
CHARACTER(LEN=255) :: TES_GC_O3_LONGNAME
CHARACTER(LEN=255) :: TES_BIAS_LONGNAME
CHARACTER(LEN=255) :: TES_COUNT_LONGNAME
CHARACTER(LEN=255) :: TES_O3_RAW_LONGNAME, TES_GC_O3_RAW_LONGNAME
CHARACTER(LEN=255) :: TES_O3_UNIT
CHARACTER(LEN=255) :: TES_GC_O3_UNIT
CHARACTER(LEN=255) :: TES_BIAS_UNIT
CHARACTER(LEN=255) :: TES_COUNT_UNIT
CHARACTER(LEN=255) :: TES_O3_RAW_UNIT
CHARACTER(LEN=255) :: TES_GC_O3_RAW_UNIT
CHARACTER(LEN=255) :: LON_LONGNAME, LAT_LONGNAME, LEV_LONGNAME
CHARACTER(LEN=255) :: LON_UNIT, LAT_UNIT, LEV_UNIT
CHARACTER(LEN=255) :: LON_RAW_LONGNAME, LAT_RAW_LONGNAME
CHARACTER(LEN=255) :: TIME_RAW_LONGNAME
CHARACTER(LEN=255) :: LON_RAW_UNIT, LAT_RAW_UNIT
CHARACTER(LEN=255) :: TIME_RAW_UNIT
INTEGER(HID_T) :: SPACE_LON, SPACE_LAT, SPACE_LEV
INTEGER(HID_T) :: SPACE_RAW_1D, SPACE_RAW_2D
INTEGER(HID_T) :: LON_ID, LAT_ID, LEV_ID
INTEGER(HID_T) :: LON_RAW_ID, LAT_RAW_ID, TIME_RAW_ID
INTEGER(HID_T) :: SPACE_TES, DSET_TES_O3_ID
INTEGER(HID_T) :: DSET_TES_GC_O3_ID
INTEGER(HID_T) :: DSET_TES_BIAS_ID
INTEGER(HID_T) :: DSET_TES_COUNT_ID
INTEGER(HID_T) :: DSET_TES_O3_RAW_ID
INTEGER(HID_T) :: DSET_TES_GC_O3_RAW_ID
INTEGER(HID_T) :: ASPACE_ID, ATYPE_ID, ATT_ID
INTEGER(HSIZE_T) :: ADIMS(1)
INTEGER(HID_T) :: TES_GROUP_ID, GRID_GROUP_ID
INTEGER(HID_T) :: GRID_DATA_GROUP_ID, RAW_DATA_GROUP_ID
INTEGER(HID_T) :: LEVEL3_GROUP_ID
INTEGER(HSIZE_T) :: DIMS(3), DIM_LON(1), DIM_LAT(1), DIM_LEV(1)
INTEGER(HSIZE_T) :: DIM_RAW_1D(1), DIM_RAW_2D(2)
INTEGER :: HDF_ERR
INTEGER :: RANK = 3
INTEGER :: I,J,L
REAL*4 :: MISS_VAL = -999.9
REAL*4 :: LON_VALS(IIPAR), LAT_VALS(JJPAR), LEV_VALS(MAXLEV)
! populate lon & lat arrays
DO I=1,IIPAR
LON_VALS(I)=GET_XMID(I)
ENDDO
DO J=1,JJPAR
LAT_VALS(J)=GET_YMID(J)
ENDDO
DO I=1,MAXLEV
LEV_VALS(I)=TES_PRESSURE(I) ! assume that TES retrieval grid doesn't change
ENDDO
DO L=1,MAXLEV
DO J=1,JJPAR
DO I=1,IIPAR
IF(TES_BIAS_COUNT(I,J,L)>0d0) THEN
TES_O3_MEAN(I,J,L) =
& REAL(TES_O3_MEAN(I,J,L)/TES_BIAS_COUNT(I,J,L))*1E9
TES_GC_O3_MEAN(I,J,L) =
& REAL(TES_GC_O3_MEAN(I,J,L)/TES_BIAS_COUNT(I,J,L))*1E9
TES_BIAS(I,J,L) =
& REAL(TES_BIAS(I,J,L)/TES_BIAS_COUNT(I,J,L))*1E9
ELSE
TES_O3_MEAN(I,J,L) = MISS_VAL
TES_GC_O3_MEAN(I,J,L) = MISS_VAL
TES_BIAS(I,J,L) = MISS_VAL
!TES_CHI_SQUARED(I,J,L) = MISS_VAL
ENDIF
ENDDO
ENDDO
ENDDO
DIMS(1) = IIPAR
DIMS(2) = JJPAR
DIMS(3) = MAXLEV
ADIMS(1) = 1
DIM_LON = IIPAR
DIM_LAT = JJPAR
DIM_LEV = MAXLEV
DIM_RAW_1D = FLEX_LON%CURRENT_N
DIM_RAW_2D(1) = MAXLEV
DIM_RAW_2D(2) = FLEX_LON%CURRENT_N
! open HDF5 interface
CALL H5OPEN_F(HDF_ERR)
! create group structure in file
CALL H5GCREATE_F(FILE_ID,"TES",TES_GROUP_ID,HDF_ERR)
CALL H5GCREATE_F(TES_GROUP_ID,"Level3",LEVEL3_GROUP_ID,HDF_ERR)
CALL H5GCREATE_F(LEVEL3_GROUP_ID,"Data",
& GRID_DATA_GROUP_ID,HDF_ERR)
CALL H5GCREATE_F(LEVEL3_GROUP_ID,"Grid",GRID_GROUP_ID,HDF_ERR)
CALL H5GCREATE_F(TES_GROUP_ID,"Level2",RAW_DATA_GROUP_ID,HDF_ERR)
! write Level3 grid information
CALL H5SCREATE_SIMPLE_F(1,DIM_LON,SPACE_LON,HDF_ERR)
CALL H5SCREATE_SIMPLE_F(1,DIM_LAT,SPACE_LAT,HDF_ERR)
CALL H5SCREATE_SIMPLE_F(1,DIM_LEV,SPACE_LEV,HDF_ERR)
CALL H5DCREATE_F(GRID_GROUP_ID, "/TES/Level3/Grid/Longitude",
& H5T_IEEE_F32LE, SPACE_LON, LON_ID, HDF_ERR)
CALL H5DCREATE_F(GRID_GROUP_ID, "/TES/Level3/Grid/Latitude",
& H5T_IEEE_F32LE, SPACE_LAT, LAT_ID, HDF_ERR)
CALL H5DCREATE_F(GRID_GROUP_ID, "/TES/Level3/Grid/Level",
& H5T_IEEE_F32LE, SPACE_LEV, LEV_ID, HDF_ERR)
CALL H5DWRITE_F(LON_ID, H5T_NATIVE_REAL, LON_VALS,
& DIM_LON, HDF_ERR)
CALL H5DWRITE_F(LAT_ID, H5T_NATIVE_REAL, LAT_VALS,
& DIM_LAT, HDF_ERR)
CALL H5DWRITE_F(LEV_ID, H5T_NATIVE_REAL, LEV_VALS,
& DIM_LEV, HDF_ERR)
CALL WRITE_ATTRIBUTES(LON_ID,"Longitude","degrees")
CALL WRITE_ATTRIBUTES(LAT_ID,"Latitude","degrees")
CALL WRITE_ATTRIBUTES(LEV_ID,"Vertical level","hPa")
CALL H5DCLOSE_F(LON_ID, HDF_ERR)
CALL H5DCLOSE_F(LAT_ID, HDF_ERR)
CALL H5DCLOSE_F(LEV_ID, HDF_ERR)
CALL H5SCLOSE_F(SPACE_LON, HDF_ERR)
CALL H5SCLOSE_F(SPACE_LAT, HDF_ERR)
CALL H5SCLOSE_F(SPACE_LEV, HDF_ERR)
! create dataspace for TES diagnostics
CALL H5SCREATE_SIMPLE_F(RANK,DIMS,SPACE_TES,HDF_ERR)
! write gridded (Level3) data
! create all datasets as little-endian 32 bit IEEE float
! write TES O3 concentrations
CALL H5DCREATE_F(GRID_DATA_GROUP_ID,"/TES/Level3/Data/TES_O3",
& H5T_IEEE_F32LE, SPACE_TES, DSET_TES_O3_ID, HDF_ERR)
CALL H5DWRITE_F(DSET_TES_O3_ID, H5T_NATIVE_REAL,
& TES_O3_MEAN, DIMS, HDF_ERR)
CALL WRITE_ATTRIBUTES(DSET_TES_O3_ID,"Mean TES O3 profiles",
& "ppbv")
CALL H5DCLOSE_F(DSET_TES_O3_ID,HDF_ERR)
! write TES_GC O3 concentrations
CALL H5DCREATE_F(GRID_DATA_GROUP_ID,"/TES/Level3/Data/TES_GC_O3",
& H5T_IEEE_F32LE, SPACE_TES, DSET_TES_GC_O3_ID, HDF_ERR)
CALL H5DWRITE_F(DSET_TES_GC_O3_ID, H5T_NATIVE_REAL,
& TES_GC_O3_MEAN, ADIMS, HDF_ERR)
CALL WRITE_ATTRIBUTES(DSET_TES_GC_O3_ID,
& "Mean GC O3 profiles in TES observation space",
& "ppbv")
CALL H5DCLOSE_F(DSET_TES_GC_O3_ID,HDF_ERR)
! write TES_GC O3 bias
CALL H5DCREATE_F(GRID_DATA_GROUP_ID,"/TES/Level3/Data/TES_BIAS",
& H5T_IEEE_F32LE, SPACE_TES, DSET_TES_BIAS_ID, HDF_ERR)
CALL H5DWRITE_F(DSET_TES_BIAS_ID, H5T_NATIVE_REAL,
& TES_BIAS, DIMS, HDF_ERR)
CALL WRITE_ATTRIBUTES(DSET_TES_BIAS_ID,"Mean TES O3 bias profile",
& "ppbv")
CALL H5DCLOSE_F(DSET_TES_BIAS_ID,HDF_ERR)
! write TES_GC O3 count
CALL H5DCREATE_F(GRID_DATA_GROUP_ID,"/TES/Level3/Data/TES_COUNT",
& H5T_IEEE_F32LE, SPACE_TES, DSET_TES_COUNT_ID, HDF_ERR)
CALL H5DWRITE_F(DSET_TES_COUNT_ID, H5T_NATIVE_REAL,
& TES_BIAS_COUNT, DIMS, HDF_ERR)
CALL WRITE_ATTRIBUTES(DSET_TES_COUNT_ID,"TES data count",
& "1")
CALL H5DCLOSE_F(DSET_TES_COUNT_ID,HDF_ERR)
!-----------------------------------------------------------------------------------------------------
! create dataspace for raw 1D (Level2) diagnostics
CALL H5SCREATE_SIMPLE_F(1,DIM_RAW_1D,SPACE_RAW_1D,HDF_ERR)
! write raw longitudes
CALL H5DCREATE_F(RAW_DATA_GROUP_ID,"/TES/Level2/Longitude",
& H5T_IEEE_F32LE, SPACE_RAW_1D, LON_RAW_ID, HDF_ERR)
CALL H5DWRITE_F(LON_RAW_ID, H5T_NATIVE_REAL,
& REAL(FLEX_LON%DATA(1:FLEX_LON%CURRENT_N),4),
& DIM_RAW_1D, HDF_ERR)
CALL WRITE_ATTRIBUTES(LON_RAW_ID,"Longitude", "degrees")
CALL H5DCLOSE_F(LON_RAW_ID,HDF_ERR)
! write raw latitudes
CALL H5DCREATE_F(RAW_DATA_GROUP_ID,"/TES/Level2/Latitude",
& H5T_IEEE_F32LE, SPACE_RAW_1D, LAT_RAW_ID, HDF_ERR)
CALL H5DWRITE_F(LAT_RAW_ID, H5T_NATIVE_REAL,
& REAL(FLEX_LAT%DATA(1:FLEX_LAT%CURRENT_N),4),
& DIM_RAW_1D, HDF_ERR)
CALL WRITE_ATTRIBUTES(LAT_RAW_ID,"Latitude", "degrees")
CALL H5DCLOSE_F(LAT_RAW_ID,HDF_ERR)
! write raw times
CALL H5DCREATE_F(RAW_DATA_GROUP_ID,"/TES/Level2/Time",
& H5T_IEEE_F64LE, SPACE_RAW_1D, TIME_RAW_ID, HDF_ERR)
CALL H5DWRITE_F(TIME_RAW_ID, H5T_NATIVE_DOUBLE,
& FLEX_TIME%DATA(1:FLEX_TIME%CURRENT_N),
& DIM_RAW_1D, HDF_ERR)
CALL WRITE_ATTRIBUTES(TIME_RAW_ID,"Time","YYYYMMDD.frac-of-day")
CALL H5DCLOSE_F(TIME_RAW_ID,HDF_ERR)
! create dataspace for raw 2D diagnostics
CALL H5SCREATE_SIMPLE_F(2,DIM_RAW_2D,SPACE_RAW_2D,HDF_ERR)
! write raw TES O3 profiles
CALL H5DCREATE_F(RAW_DATA_GROUP_ID,"/TES/Level2/TES_O3",
& H5T_IEEE_F32LE, SPACE_RAW_2D, DSET_TES_O3_RAW_ID, HDF_ERR)
CALL H5DWRITE_F(DSET_TES_O3_RAW_ID, H5T_NATIVE_REAL,
& REAL(FLEX_TES_O3%DATA(:,1:FLEX_TIME%CURRENT_N)*1e9,4),
& DIM_RAW_2D, HDF_ERR)
CALL WRITE_ATTRIBUTES(DSET_TES_O3_RAW_ID,"TES O3 profiles",
& "ppbv")
CALL H5DCLOSE_F(DSET_TES_O3_RAW_ID,HDF_ERR)
! write raw GC O3 profiles as observed by GEOS-Chem
CALL H5DCREATE_F(RAW_DATA_GROUP_ID,"/TES/Level2/TES_GC_O3",
& H5T_IEEE_F32LE, SPACE_RAW_2D, DSET_TES_GC_O3_RAW_ID, HDF_ERR)
CALL H5DWRITE_F(DSET_TES_GC_O3_RAW_ID, H5T_NATIVE_REAL,
& REAL(FLEX_GC_O3%DATA(:,1:FLEX_TIME%CURRENT_N)*1e9,4),
& DIM_RAW_2D, HDF_ERR)
CALL WRITE_ATTRIBUTES(DSET_TES_GC_O3_RAW_ID,
& "GEOS-Chem O3 profiles in TES observation space","ppbv")
CALL H5DCLOSE_F(DSET_TES_GC_O3_RAW_ID,HDF_ERR)
!close data spaces and groups
CALL H5SCLOSE_F(SPACE_TES,HDF_ERR)
CALL H5SCLOSE_F(SPACE_RAW_1D,HDF_ERR)
CALL H5SCLOSE_F(SPACE_RAW_2D,HDF_ERR)
CALL H5GCLOSE_F(RAW_DATA_GROUP_ID, HDF_ERR)
CALL H5GCLOSE_F(GRID_DATA_GROUP_ID, HDF_ERR)
CALL H5GCLOSE_F(GRID_GROUP_ID, HDF_ERR)
CALL H5GCLOSE_F(TES_GROUP_ID, HDF_ERR)
! close HDF5 interface
CALL H5CLOSE_F(HDF_ERR)
CALL H5EPRINT_F(HDF_ERR,"hdf_error")
! clear flexible arrays
CALL CLEAR_FLEX_REAL_1D(FLEX_LON)
CALL CLEAR_FLEX_REAL_1D(FLEX_LAT)
CALL CLEAR_FLEX_REAL_1D(FLEX_TIME)
CALL CLEAR_FLEX_REAL_2D(FLEX_TES_O3)
CALL CLEAR_FLEX_REAL_2D(FLEX_GC_O3)
END SUBROUTINE MAKE_TES_BIAS_FILE_HDF5
SUBROUTINE WRITE_ATTRIBUTES(DSET_ID,LONGNAME,UNIT)
USE HDF5
INTEGER(HID_T) :: DSET_ID
CHARACTER(LEN=*) :: LONGNAME
CHARACTER(LEN=*) :: UNIT
INTEGER(HID_T) :: ASPACE_ID, ATYPE_ID, ATT_ID
INTEGER(HSIZE_T) :: ADIMS(1)
INTEGER :: HDF_ERR
ADIMS(1) = 1
! create attribute "Long name"
CALL H5SCREATE_SIMPLE_F(1,ADIMS,ASPACE_ID,HDF_ERR)
CALL H5TCOPY_F(H5T_NATIVE_CHARACTER,ATYPE_ID,HDF_ERR)
CALL H5TSET_SIZE_F(ATYPE_ID,LEN(LONGNAME),HDF_ERR)
CALL H5ACREATE_F(DSET_ID,"Long name",
& ATYPE_ID,ASPACE_ID,ATT_ID,HDF_ERR)
CALL H5AWRITE_F(ATT_ID,ATYPE_ID,LONGNAME,
& ADIMS,HDF_ERR)
CALL H5ACLOSE_F(ATT_ID,HDF_ERR)
CALL H5SCLOSE_F(ASPACE_ID,HDF_ERR)
! create attribute "Unit"
CALL H5SCREATE_SIMPLE_F(1,ADIMS,ASPACE_ID,HDF_ERR)
CALL H5TCOPY_F(H5T_NATIVE_CHARACTER,ATYPE_ID,HDF_ERR)
CALL H5TSET_SIZE_F(ATYPE_ID,LEN(UNIT),HDF_ERR)
CALL H5ACREATE_F(DSET_ID,"Unit",
& ATYPE_ID,ASPACE_ID,ATT_ID,HDF_ERR)
CALL H5AWRITE_F(ATT_ID,ATYPE_ID,UNIT,
& ADIMS,HDF_ERR)
CALL H5ACLOSE_F(ATT_ID,HDF_ERR)
CALL H5SCLOSE_F(ASPACE_ID,HDF_ERR)
END SUBROUTINE WRITE_ATTRIBUTES
!--------------------------------------------------------------------------------
!mkeller: helper routines for managing flexible arrays
! reinventing the wheel here, but hey...
SUBROUTINE INIT_FLEX_REAL_1D(INPUT)
TYPE(FLEX_REAL_1D):: INPUT
INPUT%CURRENT_N = 0
INPUT%MAX_N = 1000
IF(ALLOCATED(INPUT%DATA)) DEALLOCATE(INPUT%DATA) ! safety first
ALLOCATE(INPUT%DATA(INPUT%MAX_N))
END SUBROUTINE INIT_FLEX_REAL_1D
SUBROUTINE GROW_FLEX_REAL_1D(INPUT)
TYPE(FLEX_REAL_1D) :: INPUT
REAL*8, ALLOCATABLE :: TEMP_ARRAY(:)
ALLOCATE(TEMP_ARRAY(INPUT%MAX_N * 2))
TEMP_ARRAY(1:INPUT%MAX_N) = INPUT%DATA
DEALLOCATE(INPUT%DATA)
ALLOCATE(INPUT%DATA(INPUT%MAX_N * 2))
INPUT%DATA = TEMP_ARRAY
DEALLOCATE(TEMP_ARRAY)
INPUT%MAX_N = INPUT%MAX_N * 2
END SUBROUTINE GROW_FLEX_REAL_1D
SUBROUTINE PUSH_FLEX_REAL_1D(INPUT, NEW_VAL)
TYPE(FLEX_REAL_1D) :: INPUT
REAL*8 :: NEW_VAL
IF(INPUT%CURRENT_N == INPUT%MAX_N) THEN
CALL GROW_FLEX_REAL_1D(INPUT)
ENDIF
INPUT%CURRENT_N = INPUT%CURRENT_N + 1
INPUT%DATA(INPUT%CURRENT_N) = NEW_VAL
END SUBROUTINE PUSH_FLEX_REAL_1D
SUBROUTINE CLEAR_FLEX_REAL_1D(INPUT)
TYPE(FLEX_REAL_1D) :: INPUT
IF(ALLOCATED(INPUT%DATA)) DEALLOCATE(INPUT%DATA)
END SUBROUTINE CLEAR_FLEX_REAL_1D
!--------------------------------------------------------------------------------
SUBROUTINE INIT_FLEX_REAL_2D(INPUT)
TYPE(FLEX_REAL_2D):: INPUT
INPUT%CURRENT_N = 0
INPUT%MAX_N = 1000
IF(ALLOCATED(INPUT%DATA)) DEALLOCATE(INPUT%DATA) ! safety first
ALLOCATE(INPUT%DATA(MAXLEV,INPUT%MAX_N))
END SUBROUTINE INIT_FLEX_REAL_2D
SUBROUTINE GROW_FLEX_REAL_2D(INPUT)
TYPE(FLEX_REAL_2D) :: INPUT
REAL*8, ALLOCATABLE :: TEMP_ARRAY(:,:)
ALLOCATE(TEMP_ARRAY(MAXLEV,INPUT%MAX_N * 2))
TEMP_ARRAY(:,1:INPUT%MAX_N) = INPUT%DATA
DEALLOCATE(INPUT%DATA)
ALLOCATE(INPUT%DATA(MAXLEV,INPUT%MAX_N * 2))
INPUT%DATA = TEMP_ARRAY
DEALLOCATE(TEMP_ARRAY)
INPUT%MAX_N = INPUT%MAX_N * 2
END SUBROUTINE GROW_FLEX_REAL_2D
SUBROUTINE PUSH_FLEX_REAL_2D(INPUT, NEW_VAL, NLEV)
TYPE(FLEX_REAL_2D) :: INPUT
REAL*8 :: NEW_VAL(MAXLEV)
INTEGER :: NLEV
IF(INPUT%CURRENT_N == INPUT%MAX_N) THEN
CALL GROW_FLEX_REAL_2D(INPUT)
ENDIF
INPUT%CURRENT_N = INPUT%CURRENT_N + 1
INPUT%DATA(MAXLEV-NLEV+1:MAXLEV,INPUT%CURRENT_N) = NEW_VAL(1:NLEV)
END SUBROUTINE PUSH_FLEX_REAL_2D
SUBROUTINE CLEAR_FLEX_REAL_2D(INPUT)
TYPE(FLEX_REAL_2D) :: INPUT
IF(ALLOCATED(INPUT%DATA)) DEALLOCATE(INPUT%DATA)
END SUBROUTINE CLEAR_FLEX_REAL_2D
END MODULE TES_O3_MOD