Files
2018-08-28 00:46:26 -04:00

188 lines
7.9 KiB
Fortran

! $Id: pderiv.f,v 1.1 2009/06/09 21:51:53 daven Exp $
SUBROUTINE PDERIV
!
!******************************************************************************
! Subroutine PDERIV places the partial differential equations into a matrix
! for SMVGEAR II. (M. Jacobson, 1997; bdf, bmy, 4/18/03)
!
! NOTES:
! (1 ) Now force double-precision w/ "D" exponents (bmy, 4/18/03)
!******************************************************************************
!
IMPLICIT NONE
# include "CMN_SIZE" ! Size parameters
# include "comode.h" ! SMVGEAR II arrays
C
C *********************************************************************
C ************ WRITTEN BY MARK JACOBSON (1993) ************
C *** (C) COPYRIGHT, 1993 BY MARK Z. JACOBSON ***
C *** U.S. COPYRIGHT OFFICE REGISTRATION NO. TXu 670-279 ***
C *** (650) 723-6836 ***
C *********************************************************************
C
C PPPPPPP DDDDDDD EEEEEEE RRRRRRR IIIIIII V V
C P P D D E R R I V V
C PPPPPPP D D EEEEEEE RRRRRRR I V V
C P D D E R R I V V
C P DDDDDDD EEEEEEE R R IIIIIII V
C
C *********************************************************************
C * THIS SUBROUTINE PUTS THE PARTIAL DERIVATIVES OF EACH ORDINARY *
C * DIFFERENTIAL EQUATION INTO A MATRIX. THE FORM OF THE MATRIX *
C * EQUATION IS *
C * P = I - H x Bo x J *
C * *
C * WHERE I = IDENTITY MATRIX, H = TIME-STEP, Bo = COEFFICIENT *
C * CORRESPONDING TO THE ORDER OF THE METHOD, AND J IS THE JACOBIAN *
C * MATRIX OF PARTIAL DERIVATIVES. *
C * *
C * HOW TO CALL SUBROUTINE: *
C * ---------------------- *
C * CALL PDERIV.F FROM SMVGEAR.F WITH *
C * NCS = 1..NCSGAS FOR GAS CHEMISTRY *
C * NCSP = NCS FOR DAYTIME GAS CHEM *
C * NCSP = NCS +ICS FOR NIGHTTIME GAS CHEM *
C *********************************************************************
C
C *********************************************************************
C * INITIALIZE MATRIX *
C *********************************************************************
C CC2 = ARRAY OF IARRAY UNITS HOLDING VALUES OF EACH MAXTRIX
C POSITION ACTUALLY USED.
C CC2 = P = I - DELT * ASET(NQQ,1) * PARTIAL DERIVATIVES.
C URATE = TERM OF JACOBIAN (J) = PARTIAL DERIVATIVE
C IARRAY = TOTAL NUMBER OF MATRIX POSITIONS FILLED AFTER MAT. PROCESSES
C IRMA,B,C = SPECIES # OF EACH REACTANT
C ISCHAN = ORIGINAL ORDER OF MATRIX
C KTLOOP = NUMBER OF GRID-CELLS IN A GRID-BLOCK
C NONDIAG1 = 1 + # OF FINAL MATRIX POSITIONS, EXCLUDING DIAGONAL TERMS,
C FILLED AFTER ALL MATRIX PROCESSES.
C NPDERIV = COUNTER OF NUMBER OF TIMES THIS ROUTINE IS CALLED
C R1DELT = -ASET(NQQ,1) * TIME STEP = -COEFFICIENT OF METHOD * DT
C RRATE = REACTION RATE COEFFICIENT
C
C EXAMPLE OF HOW PARTIAL DERIVATIVES ARE PLACED IN AN ARRAY:
C ---------------------------------------------------------
C
C SPECIES: A, B, C
C CONCENTRATIONS: [A], [B], [C]
C
C REACTIONS: 1) A --> B J
C 2) A + B --> C K1
C 3 A + B + C --> D K2
C
C FIRST d[A] / dt = -J[A] - K1[A][B] - K2[A][B][C]
C DERIVATIVES: d[B] / dt = +J[A] - K1[A][B] - K2[A][B][C]
C d[C] / dt = + K1[A][B] - K2[A][B][C]
C d[D] / dt = + K2[A][B][C]
C
C PREDICTOR MATRIX (P) = I - h * b * J:
C J = JACOBIAN MATRIX OF PARTIAL DERIVATES
C I = IDENTITY MATRIX
C h = TIME-STEP
C b = COEFFICIENT OF METHOD
C R = h * b = -R1DELT
C
C A B C D
C ___________________________________________________________________
C |
C A | 1-R(-J-K1[B]-K2[B][C]) -R(-K1[A]-K2[A][C]) -R(-K2[A][B]) 0
C |
C B | -R(+J-K1[B]-K2[B][C]) 1-R(-K1[A]-K2[A][C]) -R(-K2[A][B]) 0
C |
C C | -R( +K1[B]-K2[B][C]) -R(+K1[A]-K2[A][C]) 1-R(-K2[A][B]) 0
C |
C D | -R( +K2[B][C]) -R( +K2[A][C]) -R(+K2[A][B]) 1
C
C
C *********************************************************************
C ********* CALCULATE PARTIAL DERIVATIVES **********
C ********* AND SUM UP PARTIAL DERIVATIVE LOSS TERMS **********
C *********************************************************************
C
INTEGER IARRY,NONDIAG,NONDIAG1,NPDL,NPDH,NKN,JA,JB,JC,K,IAR,N
INTEGER IAL
REAL*8 FRACR1
NPDERIV = NPDERIV + 1
IARRY = IARRAY(NCSP)
NONDIAG = IARRY - ISCHAN
NONDIAG1 = NONDIAG + 1
NFDH1 = NFDH2 + IONER(NCSP)
NPDL = NPDLO(NCSP)
NPDH = NPDHI(NCSP)
C
C *********************************************************************
C * PARTIAL DERIVATIVES FOR RATES WITH THREE ACTIVE LOSS TERMS *
C *********************************************************************
C
DO 105 NKN = 1, NFDH3
JA = IRMA(NKN)
JB = IRMB(NKN)
JC = IRMC(NKN)
DO 100 K = 1, KTLOOP
URATE(K,NKN,1) = RRATE(K,NKN) * CNEW(K,JB) * CNEW(K,JC)
URATE(K,NKN,2) = RRATE(K,NKN) * CNEW(K,JA) * CNEW(K,JC)
URATE(K,NKN,3) = RRATE(K,NKN) * CNEW(K,JA) * CNEW(K,JB)
100 CONTINUE
105 CONTINUE
C
C *********************************************************************
C * PARTIAL DERIVATIVES FOR RATES WITH TWO ACTIVE LOSS TERMS *
C *********************************************************************
C
DO 155 NKN = NFDL2, NFDH2
JA = IRMA(NKN)
JB = IRMB(NKN)
DO 150 K = 1, KTLOOP
URATE(K,NKN,1) = RRATE(K,NKN) * CNEW(K,JB)
URATE(K,NKN,2) = RRATE(K,NKN) * CNEW(K,JA)
150 CONTINUE
155 CONTINUE
C
C *********************************************************************
C * PARTIAL DERIVATIVES FOR RATES WITH ONE ACTIVE LOSS TERM *
C *********************************************************************
C
DO 205 NKN = NFDL1, NFDH1
DO 200 K = 1, KTLOOP
URATE(K,NKN,1) = RRATE(K,NKN)
200 CONTINUE
205 CONTINUE
C
C *********************************************************************
C * PUT PARTIAL DERIVATIVES PRODUCTION AND LOSS TERMS IN MATRIX ARRAY *
C *********************************************************************
C FRACPL = -1. FOR ALL REACTANTS
C = +1. OR +FRACTION FOR ALL PRODUCTS
C
DO 255 IAR = 1, NONDIAG
DO 250 K = 1, KTLOOP
CC2(K,IAR) = 0.d0
250 CONTINUE
255 CONTINUE
C
DO 305 IAR = NONDIAG1, IARRY
DO 300 K = 1, KTLOOP
CC2(K,IAR) = 1.d0
300 CONTINUE
305 CONTINUE
C
DO 405 N = NPDL, NPDH
NKN = NKPDTERM(N)
IAR = IPOSPD( N)
IAL = IIALPD( N)
FRACR1 = FRACPL( N) * R1DELT
DO 400 K = 1, KTLOOP
CC2(K,IAR) = CC2(K,IAR) + FRACR1 * URATE(K,NKN,IAL)
400 CONTINUE
405 CONTINUE
C
C *********************************************************************
C ********************* END OF SUBROUTINE PDERIV **********************
C *********************************************************************
C
RETURN
END SUBROUTINE PDERIV