2906 lines
96 KiB
Fortran
2906 lines
96 KiB
Fortran
! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
!
|
|
! Numerical Integrator (Time-Stepping) File
|
|
!
|
|
! Generated by KPP-2.2 symbolic chemistry Kinetics PreProcessor
|
|
! (http://www.cs.vt.edu/~asandu/Software/KPP)
|
|
! KPP is distributed under GPL, the general public licence
|
|
! (http://www.gnu.org/copyleft/gpl.html)
|
|
! (C) 1995-1997, V. Damian & A. Sandu, CGRER, Univ. Iowa
|
|
! (C) 1997-2005, A. Sandu, Michigan Tech, Virginia Tech
|
|
! With important contributions from:
|
|
! M. Damian, Villanova University, USA
|
|
! R. Sander, Max-Planck Institute for Chemistry, Mainz, Germany
|
|
!
|
|
! File : gckpp_adj_Integrator.f90
|
|
! Time : Tue May 14 19:43:54 2013
|
|
! Working directory : /home/daven/kpp-2.2.1/GC_KPP
|
|
! Equation file : gckpp_adj.kpp
|
|
! Output root filename : gckpp_adj
|
|
!
|
|
! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
|
|
|
! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
!
|
|
! INTEGRATE - Integrator routine
|
|
! Arguments :
|
|
! TIN - Start Time for Integration
|
|
! TOUT - End Time for Integration
|
|
!
|
|
! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!
|
|
! Discrete adjoints of Rosenbrock, !
|
|
! for several Rosenbrock methods: !
|
|
! * Ros2 !
|
|
! * Ros3 !
|
|
! * Ros4 !
|
|
! * Rodas3 !
|
|
! * Rodas4 !
|
|
! By default the code employs the KPP sparse linear algebra routines !
|
|
! Compile with -DFULL_ALGEBRA to use full linear algebra (LAPACK) !
|
|
! !
|
|
! (C) Adrian Sandu, August 2004 !
|
|
! Virginia Polytechnic Institute and State University !
|
|
! Contact: sandu@cs.vt.edu !
|
|
! Revised by Philipp Miehe and Adrian Sandu, May 2006 !
|
|
! Revised by Adrian Sandu, March 2008: !
|
|
! added sensitivity w.r.t. rate coefficients, following D.K. Henze ! !
|
|
! This implementation is part of KPP - the Kinetic PreProcessor !
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!
|
|
|
|
MODULE gckpp_adj_Integrator
|
|
|
|
USE gckpp_adj_Precision
|
|
USE gckpp_adj_Parameters
|
|
USE gckpp_adj_Global
|
|
USE gckpp_adj_LinearAlgebra
|
|
USE gckpp_adj_Rates
|
|
USE gckpp_adj_Function
|
|
USE gckpp_adj_Jacobian
|
|
USE gckpp_adj_Hessian
|
|
USE gckpp_adj_Util
|
|
|
|
IMPLICIT NONE
|
|
PUBLIC
|
|
SAVE
|
|
|
|
!~~~> Statistics on the work performed by the Rosenbrock method
|
|
INTEGER, PARAMETER :: Nfun=1, Njac=2, Nstp=3, Nacc=4, &
|
|
Nrej=5, Ndec=6, Nsol=7, Nsng=8, &
|
|
Ntexit=1, Nhexit=2, Nhnew = 3, &
|
|
Nierr=20
|
|
|
|
|
|
CONTAINS ! Routines in the module gckpp_adj_Integrator
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE INTEGRATE_ADJ( NADJ, Y, Lambda, Lambda_R, &
|
|
TIN, TOUT, ATOL_adj, RTOL_adj, &
|
|
ICNTRL_U, RCNTRL_U, ISTATUS_U, RSTATUS_U )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
IMPLICIT NONE
|
|
|
|
!~~~> Y - Concentrations
|
|
REAL(kind=dp) :: Y(NVAR)
|
|
!~~~> NADJ - No. of cost functionals for which adjoints
|
|
! are evaluated simultaneously
|
|
! If single cost functional is considered (like in
|
|
! most applications) simply set NADJ = 1
|
|
INTEGER NADJ
|
|
!~~~> Lambda - Sensitivities w.r.t. concentrations
|
|
! Note: Lambda (1:NVAR,j) contains sensitivities of
|
|
! the j-th cost functional w.r.t. Y(1:NVAR), j=1...NADJ
|
|
REAL(kind=dp) :: Lambda(NVAR,NADJ)
|
|
!~~~> Lambda_R - Sensitivities w.r.t. rate coefficients
|
|
! of reactions JCOEFF(1) ... JCOEFF(NCOEFF)
|
|
REAL(kind=dp) :: Lambda_R(NCOEFF,NADJ)
|
|
!~~~> Time interval
|
|
REAL(kind=dp), INTENT(IN) :: TIN ! TIN - Start Time
|
|
REAL(kind=dp), INTENT(IN) :: TOUT ! TOUT - End Time
|
|
!~~~> Tolerances for adjoint calculations
|
|
! (used only for full continuous adjoint)
|
|
REAL(kind=dp), INTENT(IN) :: ATOL_adj(NVAR,NADJ), RTOL_adj(NVAR,NADJ)
|
|
!~~~> Optional input parameters and statistics
|
|
INTEGER, INTENT(IN), OPTIONAL :: ICNTRL_U(20)
|
|
REAL(kind=dp), INTENT(IN), OPTIONAL :: RCNTRL_U(20)
|
|
INTEGER, INTENT(OUT), OPTIONAL :: ISTATUS_U(20)
|
|
REAL(kind=dp), INTENT(OUT), OPTIONAL :: RSTATUS_U(20)
|
|
|
|
REAL(kind=dp) :: RCNTRL(20), RSTATUS(20)
|
|
INTEGER :: ICNTRL(20), ISTATUS(20), IERR
|
|
|
|
INTEGER, SAVE :: Ntotal
|
|
|
|
|
|
ICNTRL(1:20) = 0
|
|
RCNTRL(1:20) = 0.0_dp
|
|
ISTATUS(1:20) = 0
|
|
RSTATUS(1:20) = 0.0_dp
|
|
|
|
|
|
!~~~> fine-tune the integrator:
|
|
! ICNTRL(1) = 0 ! 0 = non-autonomous, 1 = autonomous
|
|
! ICNTRL(2) = 1 ! 0 = scalar, 1 = vector tolerances
|
|
! RCNTRL(3) = STEPMIN ! starting step
|
|
! ICNTRL(3) = 5 ! choice of the method for forward integration
|
|
! ICNTRL(6) = 1 ! choice of the method for continuous adjoint
|
|
! ICNTRL(7) = 2 ! 1=none, 2=discrete, 3=full continuous, 4=simplified continuous adjoint
|
|
! ICNTRL(8) = 1 ! Save fwd LU factorization: 0 = *don't* save, 1 = save
|
|
|
|
|
|
! if optional parameters are given, and if they are >=0, then they overwrite default settings
|
|
IF (PRESENT(ICNTRL_U)) THEN
|
|
WHERE(ICNTRL_U(:) >= 0) ICNTRL(:) = ICNTRL_U(:)
|
|
END IF
|
|
IF (PRESENT(RCNTRL_U)) THEN
|
|
WHERE(RCNTRL_U(:) >= 0) RCNTRL(:) = RCNTRL_U(:)
|
|
END IF
|
|
|
|
|
|
CALL RosenbrockADJ(Y, NADJ, Lambda, Lambda_R, &
|
|
TIN, TOUT, &
|
|
ATOL, RTOL, ATOL_adj, RTOL_adj, &
|
|
RCNTRL, ICNTRL, RSTATUS, ISTATUS, IERR)
|
|
|
|
|
|
!~~~> Debug option: show number of steps
|
|
! Ntotal = Ntotal + ISTATUS(Nstp)
|
|
! WRITE(6,777) ISTATUS(Nstp),Ntotal,VAR(ind_O3),VAR(ind_NO2)
|
|
!777 FORMAT('NSTEPS=',I6,' (',I6,') O3=',E24.14,' NO2=',E24.14)
|
|
|
|
IF (IERR < 0) THEN
|
|
print *,'RosenbrockADJ: Unsucessful step at T=', &
|
|
TIN,' (IERR=',IERR,')'
|
|
! Now record IERR value in RSATUS(Niere) (dkh, 07/05/06)
|
|
ISTATUS(Nierr) = IERR
|
|
END IF
|
|
|
|
STEPMIN = RSTATUS(Nhexit)
|
|
! if optional parameters are given for output
|
|
! copy to them to return information
|
|
IF (PRESENT(ISTATUS_U)) ISTATUS_U(:) = ISTATUS(:)
|
|
IF (PRESENT(RSTATUS_U)) RSTATUS_U(:) = RSTATUS(:)
|
|
|
|
END SUBROUTINE INTEGRATE_ADJ
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE RosenbrockADJ( Y, NADJ, Lambda, Lambda_R, &
|
|
Tstart, Tend, &
|
|
AbsTol, RelTol, AbsTol_adj, RelTol_adj, &
|
|
RCNTRL, ICNTRL, RSTATUS, ISTATUS, IERR)
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
!
|
|
! ADJ = Adjoint of the Tangent Linear Model of a Rosenbrock Method
|
|
!
|
|
! Solves the system y'=F(t,y) using a RosenbrockADJ method defined by:
|
|
!
|
|
! G = 1/(H*gamma(1)) - Jac(t0,Y0)
|
|
! T_i = t0 + Alpha(i)*H
|
|
! Y_i = Y0 + \sum_{j=1}^{i-1} A(i,j)*K_j
|
|
! G * K_i = Fun( T_i, Y_i ) + \sum_{j=1}^S C(i,j)/H * K_j +
|
|
! gamma(i)*dF/dT(t0, Y0)
|
|
! Y1 = Y0 + \sum_{j=1}^S M(j)*K_j
|
|
!
|
|
! For details on RosenbrockADJ methods and their implementation consult:
|
|
! E. Hairer and G. Wanner
|
|
! "Solving ODEs II. Stiff and differential-algebraic problems".
|
|
! Springer series in computational mathematics, Springer-Verlag, 1996.
|
|
! The codes contained in the book inspired this implementation.
|
|
!
|
|
! (C) Adrian Sandu, August 2004
|
|
! Virginia Polytechnic Institute and State University
|
|
! Contact: sandu@cs.vt.edu
|
|
! Revised by Philipp Miehe and Adrian Sandu, May 2006
|
|
! This implementation is part of KPP - the Kinetic PreProcessor
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
!
|
|
!~~~> INPUT ARGUMENTS:
|
|
!
|
|
!- Y(NVAR) = vector of initial conditions (at T=Tstart)
|
|
! NADJ -> dimension of linearized system,
|
|
! i.e. the number of sensitivity coefficients
|
|
!- Lambda(NVAR,NADJ) -> vector of initial sensitivity conditions (at T=Tstart)
|
|
!- [Tstart,Tend] = time range of integration
|
|
! (if Tstart>Tend the integration is performed backwards in time)
|
|
!- RelTol, AbsTol = user precribed accuracy
|
|
!- SUBROUTINE Fun( T, Y, Ydot ) = ODE function,
|
|
! returns Ydot = Y' = F(T,Y)
|
|
!- SUBROUTINE Jac( T, Y, Jcb ) = Jacobian of the ODE function,
|
|
! returns Jcb = dF/dY
|
|
!- ICNTRL(1:10) = integer inputs parameters
|
|
!- RCNTRL(1:10) = real inputs parameters
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
!
|
|
!~~~> OUTPUT ARGUMENTS:
|
|
!
|
|
!- Y(NVAR) -> vector of final states (at T->Tend)
|
|
!- Lambda(NVAR,NADJ) -> vector of final sensitivities (at T=Tend)
|
|
!- ICNTRL(11:20) -> integer output parameters
|
|
!- RCNTRL(11:20) -> real output parameters
|
|
!- IERR -> job status upon return
|
|
! - succes (positive value) or failure (negative value) -
|
|
! = 1 : Success
|
|
! = -1 : Improper value for maximal no of steps
|
|
! = -2 : Selected RosenbrockADJ method not implemented
|
|
! = -3 : Hmin/Hmax/Hstart must be positive
|
|
! = -4 : FacMin/FacMax/FacRej must be positive
|
|
! = -5 : Improper tolerance values
|
|
! = -6 : No of steps exceeds maximum bound
|
|
! = -7 : Step size too small
|
|
! = -8 : Matrix is repeatedly singular
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
!
|
|
!~~~> INPUT PARAMETERS:
|
|
!
|
|
! Note: For input parameters equal to zero the default values of the
|
|
! corresponding variables are used.
|
|
!
|
|
! ICNTRL(1) = 1: F = F(y) Independent of T (AUTONOMOUS)
|
|
! = 0: F = F(t,y) Depends on T (NON-AUTONOMOUS)
|
|
!
|
|
! ICNTRL(2) = 0: AbsTol, RelTol are NVAR-dimensional vectors
|
|
! = 1: AbsTol, RelTol are scalars
|
|
!
|
|
! ICNTRL(3) -> selection of a particular Rosenbrock method
|
|
! = 0 : default method is Rodas3
|
|
! = 1 : method is Ros2
|
|
! = 2 : method is Ros3
|
|
! = 3 : method is Ros4
|
|
! = 4 : method is Rodas3
|
|
! = 5: method is Rodas4
|
|
!
|
|
! ICNTRL(4) -> maximum number of integration steps
|
|
! For ICNTRL(4)=0) the default value of BUFSIZE is used
|
|
!
|
|
! ICNTRL(6) -> selection of a particular Rosenbrock method for the
|
|
! continuous adjoint integration - for cts adjoint it
|
|
! can be different than the forward method ICNTRL(3)
|
|
! Note 1: to avoid interpolation errors (which can be huge!)
|
|
! it is recommended to use only ICNTRL(7) = 2 or 4
|
|
! Note 2: the performance of the full continuous adjoint
|
|
! strongly depends on the forward solution accuracy Abs/RelTol
|
|
!
|
|
! ICNTRL(7) -> Type of adjoint algorithm
|
|
! = 0 : default is discrete adjoint ( of method ICNTRL(3) )
|
|
! plus sensitivity w.r.t. reaction coefficients
|
|
! = 1 : no adjoint
|
|
! = 2 : discrete adjoint ( of method ICNTRL(3) )
|
|
! plus sensitivity w.r.t. reaction coefficients
|
|
! = 3 : fully adaptive continuous adjoint ( with method ICNTRL(6) )
|
|
! = 4 : simplified continuous adjoint ( with method ICNTRL(6) )
|
|
!
|
|
! ICNTRL(8) -> checkpointing the LU factorization at each step:
|
|
! ICNTRL(8)=0 : do *not* save LU factorization (the default)
|
|
! ICNTRL(8)=1 : save LU factorization
|
|
! Note: if ICNTRL(7)=1 the LU factorization is *not* saved
|
|
!
|
|
!~~~> Real input parameters:
|
|
!
|
|
! RCNTRL(1) -> Hmin, lower bound for the integration step size
|
|
! It is strongly recommended to keep Hmin = ZERO
|
|
!
|
|
! RCNTRL(2) -> Hmax, upper bound for the integration step size
|
|
!
|
|
! RCNTRL(3) -> Hstart, starting value for the integration step size
|
|
!
|
|
! RCNTRL(4) -> FacMin, lower bound on step decrease factor (default=0.2)
|
|
!
|
|
! RCNTRL(5) -> FacMax, upper bound on step increase factor (default=6)
|
|
!
|
|
! RCNTRL(6) -> FacRej, step decrease factor after multiple rejections
|
|
! (default=0.1)
|
|
!
|
|
! RCNTRL(7) -> FacSafe, by which the new step is slightly smaller
|
|
! than the predicted value (default=0.9)
|
|
!
|
|
! RCNTRL(8) -> ThetaMin. If Newton convergence rate smaller
|
|
! than ThetaMin the Jacobian is not recomputed;
|
|
! (default=0.001)
|
|
!
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
!
|
|
!~~~> OUTPUT PARAMETERS:
|
|
!
|
|
! Note: each call to RosenbrockADJ adds the corrent no. of fcn calls
|
|
! to previous value of ISTATUS(1), and similar for the other params.
|
|
! Set ISTATUS(1:10) = 0 before call to avoid this accumulation.
|
|
!
|
|
! ISTATUS(1) = No. of function calls
|
|
! ISTATUS(2) = No. of jacobian calls
|
|
! ISTATUS(3) = No. of steps
|
|
! ISTATUS(4) = No. of accepted steps
|
|
! ISTATUS(5) = No. of rejected steps (except at the beginning)
|
|
! ISTATUS(6) = No. of LU decompositions
|
|
! ISTATUS(7) = No. of forward/backward substitutions
|
|
! ISTATUS(8) = No. of singular matrix decompositions
|
|
!
|
|
! RSTATUS(1) -> Texit, the time corresponding to the
|
|
! computed Y upon return
|
|
! RSTATUS(2) -> Hexit, last accepted step before exit
|
|
! For multiple restarts, use Hexit as Hstart in the following run
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
IMPLICIT NONE
|
|
|
|
!~~~> Arguments
|
|
REAL(kind=dp), INTENT(INOUT) :: Y(NVAR)
|
|
INTEGER, INTENT(IN) :: NADJ
|
|
REAL(kind=dp), INTENT(INOUT) :: Lambda(NVAR,NADJ)
|
|
REAL(kind=dp), INTENT(INOUT) :: Lambda_R(NCOEFF,NADJ)
|
|
REAL(kind=dp), INTENT(IN) :: Tstart,Tend
|
|
REAL(kind=dp), INTENT(IN) :: AbsTol(NVAR),RelTol(NVAR)
|
|
REAL(kind=dp), INTENT(IN) :: AbsTol_adj(NVAR,NADJ), RelTol_adj(NVAR,NADJ)
|
|
INTEGER, INTENT(IN) :: ICNTRL(20)
|
|
REAL(kind=dp), INTENT(IN) :: RCNTRL(20)
|
|
INTEGER, INTENT(INOUT) :: ISTATUS(20)
|
|
REAL(kind=dp), INTENT(INOUT) :: RSTATUS(20)
|
|
INTEGER, INTENT(OUT) :: IERR
|
|
!~~~> Parameters of the Rosenbrock method, up to 6 stages
|
|
INTEGER :: ros_S, rosMethod
|
|
INTEGER, PARAMETER :: RS2=1, RS3=2, RS4=3, RD3=4, RD4=5
|
|
REAL(kind=dp) :: ros_A(15), ros_C(15), ros_M(6), ros_E(6), &
|
|
ros_Alpha(6), ros_Gamma(6), ros_ELO
|
|
LOGICAL :: ros_NewF(6)
|
|
CHARACTER(LEN=12) :: ros_Name
|
|
!~~~> Types of Adjoints Implemented
|
|
INTEGER, PARAMETER :: Adj_none = 1, Adj_discrete = 2, &
|
|
Adj_continuous = 3, Adj_simple_continuous = 4
|
|
!~~~> Checkpoints in memory
|
|
! Can make this much smaller (dkh, 01/06/10)
|
|
!INTEGER, PARAMETER :: bufsize = 200000
|
|
INTEGER, PARAMETER :: bufsize = 4000
|
|
! Need to make stack_ptr THREADPRIVATE (dkh, 07/31/09)
|
|
!INTEGER :: stack_ptr = 0 ! last written entry
|
|
REAL(kind=dp), DIMENSION(:), POINTER :: chk_H, chk_T
|
|
REAL(kind=dp), DIMENSION(:,:), POINTER :: chk_Y, chk_K, chk_J
|
|
REAL(kind=dp), DIMENSION(:,:), POINTER :: chk_dY, chk_d2Y
|
|
!~~~> Local variables
|
|
REAL(kind=dp) :: Roundoff, FacMin, FacMax, FacRej, FacSafe
|
|
REAL(kind=dp) :: Hmin, Hmax, Hstart
|
|
REAL(kind=dp) :: Texit
|
|
INTEGER :: i, UplimTol, Max_no_steps
|
|
INTEGER :: IERR_SAVE
|
|
INTEGER :: AdjointType, CadjMethod
|
|
LOGICAL :: Autonomous, VectorTol, SaveLU
|
|
!~~~> Parameters
|
|
REAL(kind=dp), PARAMETER :: ZERO = 0.0d0, ONE = 1.0d0
|
|
REAL(kind=dp), PARAMETER :: DeltaMin = 1.0d-5
|
|
|
|
!~~~> Initialize statistics
|
|
ISTATUS(1:20) = 0
|
|
RSTATUS(1:20) = ZERO
|
|
|
|
!~~~> Autonomous or time dependent ODE. Default is time dependent.
|
|
Autonomous = .NOT.(ICNTRL(1) == 0)
|
|
|
|
!~~~> For Scalar tolerances (ICNTRL(2).NE.0) the code uses AbsTol(1) and RelTol(1)
|
|
! For Vector tolerances (ICNTRL(2) == 0) the code uses AbsTol(1:NVAR) and RelTol(1:NVAR)
|
|
IF (ICNTRL(2) == 0) THEN
|
|
VectorTol = .TRUE.
|
|
UplimTol = NVAR
|
|
ELSE
|
|
VectorTol = .FALSE.
|
|
UplimTol = 1
|
|
END IF
|
|
|
|
!~~~> Initialize the particular Rosenbrock method selected
|
|
SELECT CASE (ICNTRL(3))
|
|
CASE (1)
|
|
CALL Ros2
|
|
CASE (2)
|
|
CALL Ros3
|
|
CASE (3)
|
|
CALL Ros4
|
|
CASE (0,4)
|
|
CALL Rodas3
|
|
CASE (5)
|
|
CALL Rodas4
|
|
CASE DEFAULT
|
|
PRINT * , 'Unknown Rosenbrock method: ICNTRL(3)=',ICNTRL(3)
|
|
CALL ros_ErrorMsg(-2,Tstart,ZERO,IERR)
|
|
RETURN
|
|
END SELECT
|
|
|
|
!~~~> The maximum number of steps admitted
|
|
IF (ICNTRL(4) == 0) THEN
|
|
Max_no_steps = bufsize - 1
|
|
ELSEIF (Max_no_steps > 0) THEN
|
|
Max_no_steps=ICNTRL(4)
|
|
ELSE
|
|
PRINT * ,'User-selected max no. of steps: ICNTRL(4)=',ICNTRL(4)
|
|
CALL ros_ErrorMsg(-1,Tstart,ZERO,IERR)
|
|
RETURN
|
|
END IF
|
|
|
|
!~~~> The particular Rosenbrock method chosen for integrating the cts adjoint
|
|
IF (ICNTRL(6) == 0) THEN
|
|
CadjMethod = 4
|
|
ELSEIF ( (ICNTRL(6) >= 1).AND.(ICNTRL(6) <= 5) ) THEN
|
|
CadjMethod = ICNTRL(6)
|
|
ELSE
|
|
PRINT * , 'Unknown CADJ Rosenbrock method: ICNTRL(6)=', CadjMethod
|
|
CALL ros_ErrorMsg(-2,Tstart,ZERO,IERR)
|
|
RETURN
|
|
END IF
|
|
|
|
!~~~> Discrete or continuous adjoint formulation
|
|
IF ( ICNTRL(7) == 0 ) THEN
|
|
AdjointType = Adj_discrete
|
|
ELSEIF ( (ICNTRL(7) >= 1).AND.(ICNTRL(7) <= 4) ) THEN
|
|
AdjointType = ICNTRL(7)
|
|
ELSE
|
|
PRINT * , 'User-selected adjoint type: ICNTRL(7)=', AdjointType
|
|
CALL ros_ErrorMsg(-9,Tstart,ZERO,IERR)
|
|
RETURN
|
|
END IF
|
|
|
|
!~~~> Save or not the forward LU factorization
|
|
SaveLU = (ICNTRL(8) /= 0)
|
|
|
|
|
|
!~~~> Unit roundoff (1+Roundoff>1)
|
|
Roundoff = WLAMCH('E')
|
|
|
|
!~~~> Lower bound on the step size: (positive value)
|
|
IF (RCNTRL(1) == ZERO) THEN
|
|
Hmin = ZERO
|
|
ELSEIF (RCNTRL(1) > ZERO) THEN
|
|
Hmin = RCNTRL(1)
|
|
ELSE
|
|
PRINT * , 'User-selected Hmin: RCNTRL(1)=', RCNTRL(1)
|
|
CALL ros_ErrorMsg(-3,Tstart,ZERO,IERR)
|
|
RETURN
|
|
END IF
|
|
!~~~> Upper bound on the step size: (positive value)
|
|
IF (RCNTRL(2) == ZERO) THEN
|
|
Hmax = ABS(Tend-Tstart)
|
|
ELSEIF (RCNTRL(2) > ZERO) THEN
|
|
Hmax = MIN(ABS(RCNTRL(2)),ABS(Tend-Tstart))
|
|
ELSE
|
|
PRINT * , 'User-selected Hmax: RCNTRL(2)=', RCNTRL(2)
|
|
CALL ros_ErrorMsg(-3,Tstart,ZERO,IERR)
|
|
RETURN
|
|
END IF
|
|
!~~~> Starting step size: (positive value)
|
|
IF (RCNTRL(3) == ZERO) THEN
|
|
Hstart = MAX(Hmin,DeltaMin)
|
|
ELSEIF (RCNTRL(3) > ZERO) THEN
|
|
Hstart = MIN(ABS(RCNTRL(3)),ABS(Tend-Tstart))
|
|
ELSE
|
|
PRINT * , 'User-selected Hstart: RCNTRL(3)=', RCNTRL(3)
|
|
CALL ros_ErrorMsg(-3,Tstart,ZERO,IERR)
|
|
RETURN
|
|
END IF
|
|
!~~~> Step size can be changed s.t. FacMin < Hnew/Hold < FacMax
|
|
IF (RCNTRL(4) == ZERO) THEN
|
|
FacMin = 0.2d0
|
|
ELSEIF (RCNTRL(4) > ZERO) THEN
|
|
FacMin = RCNTRL(4)
|
|
ELSE
|
|
PRINT * , 'User-selected FacMin: RCNTRL(4)=', RCNTRL(4)
|
|
CALL ros_ErrorMsg(-4,Tstart,ZERO,IERR)
|
|
RETURN
|
|
END IF
|
|
IF (RCNTRL(5) == ZERO) THEN
|
|
FacMax = 6.0d0
|
|
ELSEIF (RCNTRL(5) > ZERO) THEN
|
|
FacMax = RCNTRL(5)
|
|
ELSE
|
|
PRINT * , 'User-selected FacMax: RCNTRL(5)=', RCNTRL(5)
|
|
CALL ros_ErrorMsg(-4,Tstart,ZERO,IERR)
|
|
RETURN
|
|
END IF
|
|
!~~~> FacRej: Factor to decrease step after 2 succesive rejections
|
|
IF (RCNTRL(6) == ZERO) THEN
|
|
FacRej = 0.1d0
|
|
ELSEIF (RCNTRL(6) > ZERO) THEN
|
|
FacRej = RCNTRL(6)
|
|
ELSE
|
|
PRINT * , 'User-selected FacRej: RCNTRL(6)=', RCNTRL(6)
|
|
CALL ros_ErrorMsg(-4,Tstart,ZERO,IERR)
|
|
RETURN
|
|
END IF
|
|
!~~~> FacSafe: Safety Factor in the computation of new step size
|
|
IF (RCNTRL(7) == ZERO) THEN
|
|
FacSafe = 0.9d0
|
|
ELSEIF (RCNTRL(7) > ZERO) THEN
|
|
FacSafe = RCNTRL(7)
|
|
ELSE
|
|
PRINT * , 'User-selected FacSafe: RCNTRL(7)=', RCNTRL(7)
|
|
CALL ros_ErrorMsg(-4,Tstart,ZERO,IERR)
|
|
RETURN
|
|
END IF
|
|
!~~~> Check if tolerances are reasonable
|
|
DO i=1,UplimTol
|
|
IF ( (AbsTol(i) <= ZERO) .OR. (RelTol(i) <= 10.d0*Roundoff) &
|
|
.OR. (RelTol(i) >= 1.0d0) ) THEN
|
|
PRINT * , ' AbsTol(',i,') = ',AbsTol(i)
|
|
PRINT * , ' RelTol(',i,') = ',RelTol(i)
|
|
CALL ros_ErrorMsg(-5,Tstart,ZERO,IERR)
|
|
RETURN
|
|
END IF
|
|
END DO
|
|
|
|
|
|
!~~~> Allocate checkpoint space or open checkpoint files
|
|
IF (AdjointType == Adj_discrete) THEN
|
|
CALL ros_AllocateDBuffers( ros_S )
|
|
ELSEIF ( (AdjointType == Adj_continuous).OR. &
|
|
(AdjointType == Adj_simple_continuous) ) THEN
|
|
CALL ros_AllocateCBuffers
|
|
END IF
|
|
|
|
!~~~> CALL Forward Rosenbrock method
|
|
CALL ros_FwdInt(Y,Tstart,Tend,Texit, &
|
|
AbsTol, RelTol, &
|
|
! Error indicator
|
|
IERR)
|
|
|
|
!!$ PRINT*,'FORWARD STATISTICS'
|
|
!!$ PRINT*,'Step=',Nstp,' Acc=',Nacc, &
|
|
!!$ ' Rej=',Nrej, ' Singular=',Nsng
|
|
|
|
! Now contiue to avoid having adjoint arrays become corrupt (dkh, 07/08/11, adj32_004)
|
|
!~~~> If Forward integration failed return
|
|
! IF (IERR<0) RETURN
|
|
! but save a copy of the error stat
|
|
IERR_SAVE = IERR
|
|
|
|
!~~~> Initialize the particular Rosenbrock method for continuous adjoint
|
|
IF ( (AdjointType == Adj_continuous).OR. &
|
|
(AdjointType == Adj_simple_continuous) ) THEN
|
|
SELECT CASE (CadjMethod)
|
|
CASE (1)
|
|
CALL Ros2
|
|
CASE (2)
|
|
CALL Ros3
|
|
CASE (3)
|
|
CALL Ros4
|
|
CASE (4)
|
|
CALL Rodas3
|
|
CASE (5)
|
|
CALL Rodas4
|
|
CASE DEFAULT
|
|
PRINT * , 'Unknown Rosenbrock method: ICNTRL(3)=', ICNTRL(3)
|
|
CALL ros_ErrorMsg(-2,Tstart,ZERO,IERR)
|
|
RETURN
|
|
END SELECT
|
|
END IF
|
|
|
|
SELECT CASE (AdjointType)
|
|
CASE (Adj_discrete)
|
|
CALL ros_DadjRateInt ( &
|
|
NADJ, Lambda, Lambda_R, &
|
|
Tstart, Tend, Texit, &
|
|
IERR )
|
|
CASE (Adj_continuous)
|
|
CALL ros_CadjInt ( &
|
|
NADJ, Lambda, &
|
|
Tend, Tstart, Texit, &
|
|
AbsTol_adj, RelTol_adj, &
|
|
IERR )
|
|
CASE (Adj_simple_continuous)
|
|
CALL ros_SimpleCadjInt ( &
|
|
NADJ, Lambda, &
|
|
Tstart, Tend, Texit, &
|
|
IERR )
|
|
END SELECT ! AdjointType
|
|
|
|
!!$ PRINT*,'ADJOINT STATISTICS'
|
|
!!$ PRINT*,'Step=',Nstp,' Acc=',Nacc, &
|
|
!!$ ' Rej=',Nrej, ' Singular=',Nsng
|
|
|
|
!~~~> Free checkpoint space or close checkpoint files
|
|
IF (AdjointType == Adj_discrete) THEN
|
|
CALL ros_FreeDBuffers
|
|
ELSEIF ( (AdjointType == Adj_continuous) .OR. &
|
|
(AdjointType == Adj_simple_continuous) ) THEN
|
|
CALL ros_FreeCBuffers
|
|
END IF
|
|
|
|
|
|
! replace with original error stat from fwd int dkh
|
|
IERR = IERR_SAVE
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
CONTAINS ! Procedures internal to RosenbrockADJ
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_AllocateDBuffers( S )
|
|
!~~~> Allocate buffer space for discrete adjoint
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
INTEGER :: i, S
|
|
|
|
ALLOCATE( chk_H(bufsize), STAT=i )
|
|
IF (i/=0) THEN
|
|
PRINT*,'Failed allocation of buffer H'; STOP
|
|
END IF
|
|
ALLOCATE( chk_T(bufsize), STAT=i )
|
|
IF (i/=0) THEN
|
|
PRINT*,'Failed allocation of buffer T'; STOP
|
|
END IF
|
|
ALLOCATE( chk_Y(NVAR*S,bufsize), STAT=i )
|
|
IF (i/=0) THEN
|
|
PRINT*,'Failed allocation of buffer Y'; STOP
|
|
END IF
|
|
ALLOCATE( chk_K(NVAR*S,bufsize), STAT=i )
|
|
IF (i/=0) THEN
|
|
PRINT*,'Failed allocation of buffer K'; STOP
|
|
END IF
|
|
IF (SaveLU) THEN
|
|
#ifdef FULL_ALGEBRA
|
|
ALLOCATE( chk_J(NVAR*NVAR,bufsize), STAT=i )
|
|
#else
|
|
ALLOCATE( chk_J(LU_NONZERO,bufsize), STAT=i )
|
|
#endif
|
|
IF (i/=0) THEN
|
|
PRINT*,'Failed allocation of buffer J'; STOP
|
|
END IF
|
|
END IF
|
|
|
|
END SUBROUTINE ros_AllocateDBuffers
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_FreeDBuffers
|
|
!~~~> Dallocate buffer space for discrete adjoint
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
INTEGER :: i
|
|
|
|
DEALLOCATE( chk_H, STAT=i )
|
|
IF (i/=0) THEN
|
|
PRINT*,'Failed deallocation of buffer H'; STOP
|
|
END IF
|
|
DEALLOCATE( chk_T, STAT=i )
|
|
IF (i/=0) THEN
|
|
PRINT*,'Failed deallocation of buffer T'; STOP
|
|
END IF
|
|
DEALLOCATE( chk_Y, STAT=i )
|
|
IF (i/=0) THEN
|
|
PRINT*,'Failed deallocation of buffer Y'; STOP
|
|
END IF
|
|
DEALLOCATE( chk_K, STAT=i )
|
|
IF (i/=0) THEN
|
|
PRINT*,'Failed deallocation of buffer K'; STOP
|
|
END IF
|
|
IF (SaveLU) THEN
|
|
DEALLOCATE( chk_J, STAT=i )
|
|
IF (i/=0) THEN
|
|
PRINT*,'Failed deallocation of buffer J'; STOP
|
|
END IF
|
|
END IF
|
|
|
|
END SUBROUTINE ros_FreeDBuffers
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_AllocateCBuffers
|
|
!~~~> Allocate buffer space for continuous adjoint
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
INTEGER :: i
|
|
|
|
ALLOCATE( chk_H(bufsize), STAT=i )
|
|
IF (i/=0) THEN
|
|
PRINT*,'Failed allocation of buffer H'; STOP
|
|
END IF
|
|
ALLOCATE( chk_T(bufsize), STAT=i )
|
|
IF (i/=0) THEN
|
|
PRINT*,'Failed allocation of buffer T'; STOP
|
|
END IF
|
|
ALLOCATE( chk_Y(NVAR,bufsize), STAT=i )
|
|
IF (i/=0) THEN
|
|
PRINT*,'Failed allocation of buffer Y'; STOP
|
|
END IF
|
|
ALLOCATE( chk_dY(NVAR,bufsize), STAT=i )
|
|
IF (i/=0) THEN
|
|
PRINT*,'Failed allocation of buffer dY'; STOP
|
|
END IF
|
|
ALLOCATE( chk_d2Y(NVAR,bufsize), STAT=i )
|
|
IF (i/=0) THEN
|
|
PRINT*,'Failed allocation of buffer d2Y'; STOP
|
|
END IF
|
|
|
|
END SUBROUTINE ros_AllocateCBuffers
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_FreeCBuffers
|
|
!~~~> Dallocate buffer space for continuous adjoint
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
INTEGER :: i
|
|
|
|
DEALLOCATE( chk_H, STAT=i )
|
|
IF (i/=0) THEN
|
|
PRINT*,'Failed deallocation of buffer H'; STOP
|
|
END IF
|
|
DEALLOCATE( chk_T, STAT=i )
|
|
IF (i/=0) THEN
|
|
PRINT*,'Failed deallocation of buffer T'; STOP
|
|
END IF
|
|
DEALLOCATE( chk_Y, STAT=i )
|
|
IF (i/=0) THEN
|
|
PRINT*,'Failed deallocation of buffer Y'; STOP
|
|
END IF
|
|
DEALLOCATE( chk_dY, STAT=i )
|
|
IF (i/=0) THEN
|
|
PRINT*,'Failed deallocation of buffer dY'; STOP
|
|
END IF
|
|
DEALLOCATE( chk_d2Y, STAT=i )
|
|
IF (i/=0) THEN
|
|
PRINT*,'Failed deallocation of buffer d2Y'; STOP
|
|
END IF
|
|
|
|
END SUBROUTINE ros_FreeCBuffers
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_DPush( S, T, H, Ystage, K, E, P )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
!~~~> Saves the next trajectory snapshot for discrete adjoints
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
INTEGER :: S ! no of stages
|
|
REAL(kind=dp) :: T, H, Ystage(NVAR*S), K(NVAR*S)
|
|
INTEGER :: P(NVAR)
|
|
#ifdef FULL_ALGEBRA
|
|
REAL(kind=dp) :: E(NVAR,NVAR)
|
|
#else
|
|
REAL(kind=dp) :: E(LU_NONZERO)
|
|
#endif
|
|
|
|
stack_ptr = stack_ptr + 1
|
|
IF ( stack_ptr > bufsize ) THEN
|
|
PRINT*,'Push failed: buffer overflow'
|
|
STOP
|
|
END IF
|
|
chk_H( stack_ptr ) = H
|
|
chk_T( stack_ptr ) = T
|
|
!CALL WCOPY(NVAR*S,Ystage,1,chk_Y(1,stack_ptr),1)
|
|
!CALL WCOPY(NVAR*S,K,1,chk_K(1,stack_ptr),1)
|
|
chk_Y(1:NVAR*S,stack_ptr) = Ystage(1:NVAR*S)
|
|
chk_K(1:NVAR*S,stack_ptr) = K(1:NVAR*S)
|
|
IF (SaveLU) THEN
|
|
#ifdef FULL_ALGEBRA
|
|
chk_J(1:NVAR,1:NVAR,stack_ptr) = E(1:NVAR,1:NVAR)
|
|
chk_P(1:NVAR,stack_ptr) = P(1:NVAR)
|
|
#else
|
|
chk_J(1:LU_NONZERO,stack_ptr) = E(1:LU_NONZERO)
|
|
#endif
|
|
END IF
|
|
|
|
END SUBROUTINE ros_DPush
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_DPop( S, T, H, Ystage, K, E, P )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
!~~~> Retrieves the next trajectory snapshot for discrete adjoints
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
INTEGER :: S ! no of stages
|
|
REAL(kind=dp) :: T, H, Ystage(NVAR*S), K(NVAR*S)
|
|
INTEGER :: P(NVAR)
|
|
#ifdef FULL_ALGEBRA
|
|
REAL(kind=dp) :: E(NVAR,NVAR)
|
|
#else
|
|
REAL(kind=dp) :: E(LU_NONZERO)
|
|
#endif
|
|
|
|
IF ( stack_ptr <= 0 ) THEN
|
|
PRINT*,'Pop failed: empty buffer'
|
|
STOP
|
|
END IF
|
|
H = chk_H( stack_ptr )
|
|
T = chk_T( stack_ptr )
|
|
!CALL WCOPY(NVAR*S,chk_Y(1,stack_ptr),1,Ystage,1)
|
|
!CALL WCOPY(NVAR*S,chk_K(1,stack_ptr),1,K,1)
|
|
Ystage(1:NVAR*S) = chk_Y(1:NVAR*S,stack_ptr)
|
|
K(1:NVAR*S) = chk_K(1:NVAR*S,stack_ptr)
|
|
!CALL WCOPY(LU_NONZERO,chk_J(1,stack_ptr),1,Jcb,1)
|
|
IF (SaveLU) THEN
|
|
#ifdef FULL_ALGEBRA
|
|
E(1:NVAR,1:NVAR) = chk_J(1:NVAR,1:NVAR,stack_ptr)
|
|
P(1:NVAR) = chk_P(1:NVAR,stack_ptr)
|
|
#else
|
|
E(1:LU_NONZERO) = chk_J(1:LU_NONZERO,stack_ptr)
|
|
#endif
|
|
END IF
|
|
|
|
stack_ptr = stack_ptr - 1
|
|
|
|
END SUBROUTINE ros_DPop
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_CPush( T, H, Y, dY, d2Y )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
!~~~> Saves the next trajectory snapshot for discrete adjoints
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
REAL(kind=dp) :: T, H, Y(NVAR), dY(NVAR), d2Y(NVAR)
|
|
|
|
stack_ptr = stack_ptr + 1
|
|
IF ( stack_ptr > bufsize ) THEN
|
|
PRINT*,'Push failed: buffer overflow'
|
|
STOP
|
|
END IF
|
|
chk_H( stack_ptr ) = H
|
|
chk_T( stack_ptr ) = T
|
|
!CALL WCOPY(NVAR,Y,1,chk_Y(1,stack_ptr),1)
|
|
!CALL WCOPY(NVAR,dY,1,chk_dY(1,stack_ptr),1)
|
|
!CALL WCOPY(NVAR,d2Y,1,chk_d2Y(1,stack_ptr),1)
|
|
chk_Y(1:NVAR,stack_ptr) = Y(1:NVAR)
|
|
chk_dY(1:NVAR,stack_ptr) = dY(1:NVAR)
|
|
chk_d2Y(1:NVAR,stack_ptr) = d2Y(1:NVAR)
|
|
END SUBROUTINE ros_CPush
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_CPop( T, H, Y, dY, d2Y )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
!~~~> Retrieves the next trajectory snapshot for discrete adjoints
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
REAL(kind=dp) :: T, H, Y(NVAR), dY(NVAR), d2Y(NVAR)
|
|
|
|
IF ( stack_ptr <= 0 ) THEN
|
|
PRINT*,'Pop failed: empty buffer'
|
|
STOP
|
|
END IF
|
|
H = chk_H( stack_ptr )
|
|
T = chk_T( stack_ptr )
|
|
!CALL WCOPY(NVAR,chk_Y(1,stack_ptr),1,Y,1)
|
|
!CALL WCOPY(NVAR,chk_dY(1,stack_ptr),1,dY,1)
|
|
!CALL WCOPY(NVAR,chk_d2Y(1,stack_ptr),1,d2Y,1)
|
|
Y(1:NVAR) = chk_Y(1:NVAR,stack_ptr)
|
|
dY(1:NVAR) = chk_dY(1:NVAR,stack_ptr)
|
|
d2Y(1:NVAR) = chk_d2Y(1:NVAR,stack_ptr)
|
|
|
|
stack_ptr = stack_ptr - 1
|
|
|
|
END SUBROUTINE ros_CPop
|
|
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_ErrorMsg(Code,T,H,IERR)
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! Handles all error messages
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
REAL(kind=dp), INTENT(IN) :: T, H
|
|
INTEGER, INTENT(IN) :: Code
|
|
INTEGER, INTENT(OUT) :: IERR
|
|
|
|
IERR = Code
|
|
PRINT * , &
|
|
'Forced exit from RosenbrockADJ due to the following error:'
|
|
|
|
SELECT CASE (Code)
|
|
CASE (-1)
|
|
PRINT * , '--> Improper value for maximal no of steps'
|
|
CASE (-2)
|
|
PRINT * , '--> Selected RosenbrockADJ method not implemented'
|
|
CASE (-3)
|
|
PRINT * , '--> Hmin/Hmax/Hstart must be positive'
|
|
CASE (-4)
|
|
PRINT * , '--> FacMin/FacMax/FacRej must be positive'
|
|
CASE (-5)
|
|
PRINT * , '--> Improper tolerance values'
|
|
CASE (-6)
|
|
PRINT * , '--> No of steps exceeds maximum buffer bound'
|
|
CASE (-7)
|
|
PRINT * , '--> Step size too small: T + 10*H = T', &
|
|
' or H < Roundoff'
|
|
CASE (-8)
|
|
PRINT * , '--> Matrix is repeatedly singular'
|
|
CASE (-9)
|
|
PRINT * , '--> Improper type of adjoint selected'
|
|
CASE DEFAULT
|
|
PRINT *, 'Unknown Error code: ', Code
|
|
END SELECT
|
|
|
|
PRINT *, 'T=', T, 'and H=', H
|
|
|
|
END SUBROUTINE ros_ErrorMsg
|
|
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_FwdInt (Y, &
|
|
Tstart, Tend, T, &
|
|
AbsTol, RelTol, &
|
|
!~~~> Error indicator
|
|
IERR )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! Template for the implementation of a generic RosenbrockADJ method
|
|
! defined by ros_S (no of stages)
|
|
! and its coefficients ros_{A,C,M,E,Alpha,Gamma}
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
IMPLICIT NONE
|
|
|
|
!~~~> Input: the initial condition at Tstart; Output: the solution at T
|
|
REAL(kind=dp), INTENT(INOUT) :: Y(NVAR)
|
|
!~~~> Input: integration interval
|
|
REAL(kind=dp), INTENT(IN) :: Tstart,Tend
|
|
!~~~> Output: time at which the solution is returned (T=Tend if success)
|
|
REAL(kind=dp), INTENT(OUT) :: T
|
|
!~~~> Input: tolerances
|
|
REAL(kind=dp), INTENT(IN) :: AbsTol(NVAR), RelTol(NVAR)
|
|
!~~~> Output: Error indicator
|
|
INTEGER, INTENT(OUT) :: IERR
|
|
! ~~~~ Local variables
|
|
REAL(kind=dp) :: Ynew(NVAR), Fcn0(NVAR), Fcn(NVAR)
|
|
REAL(kind=dp) :: K(NVAR*ros_S), dFdT(NVAR)
|
|
REAL(kind=dp), DIMENSION(:), POINTER :: Ystage
|
|
#ifdef FULL_ALGEBRA
|
|
REAL(kind=dp) :: Jac0(NVAR,NVAR), Ghimj(NVAR,NVAR)
|
|
#else
|
|
REAL(kind=dp) :: Jac0(LU_NONZERO), Ghimj(LU_NONZERO)
|
|
#endif
|
|
REAL(kind=dp) :: H, Hnew, HC, HG, Fac, Tau
|
|
REAL(kind=dp) :: Err, Yerr(NVAR)
|
|
INTEGER :: Pivot(NVAR), Direction, ioffset, i, j, istage
|
|
LOGICAL :: RejectLastH, RejectMoreH, Singular
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
!~~~> Allocate stage vector buffer if needed
|
|
IF (AdjointType == Adj_discrete) THEN
|
|
ALLOCATE(Ystage(NVAR*ros_S), STAT=i)
|
|
! Uninitialized Ystage may lead to NaN on some compilers
|
|
Ystage = 0.0d0
|
|
IF (i/=0) THEN
|
|
PRINT*,'Allocation of Ystage failed'
|
|
STOP
|
|
END IF
|
|
END IF
|
|
|
|
!~~~> Initial preparations
|
|
T = Tstart
|
|
RSTATUS(Nhexit) = ZERO
|
|
H = MIN( MAX(ABS(Hmin),ABS(Hstart)) , ABS(Hmax) )
|
|
IF (ABS(H) <= 10.0_dp*Roundoff) H = DeltaMin
|
|
|
|
IF (Tend >= Tstart) THEN
|
|
Direction = +1
|
|
ELSE
|
|
Direction = -1
|
|
END IF
|
|
H = Direction*H
|
|
|
|
RejectLastH=.FALSE.
|
|
RejectMoreH=.FALSE.
|
|
|
|
!~~~> Time loop begins below
|
|
|
|
TimeLoop: DO WHILE ( (Direction > 0).AND.((T-Tend)+Roundoff*abs(Tend) <= ZERO) &
|
|
.OR. (Direction < 0).AND.((Tend-T)+Roundoff*abs(Tend) <= ZERO) ) ! Added *abs(Tend) by KS, A.Sandu for boundary cases
|
|
|
|
IF ( ISTATUS(Nstp) > Max_no_steps ) THEN ! Too many steps
|
|
CALL ros_ErrorMsg(-6,T,H,IERR)
|
|
RETURN
|
|
END IF
|
|
IF ( ((T+0.1d0*H) == T).OR.(H <= Roundoff) ) THEN ! Step size too small
|
|
CALL ros_ErrorMsg(-7,T,H,IERR)
|
|
RETURN
|
|
END IF
|
|
|
|
!~~~> Limit H if necessary to avoid going beyond Tend
|
|
RSTATUS(Nhexit) = H
|
|
H = MIN(H,ABS(Tend-T))
|
|
|
|
!~~~> Compute the function at current time
|
|
CALL FunTemplate(T,Y,Fcn0)
|
|
ISTATUS(Nfun) = ISTATUS(Nfun) + 1
|
|
|
|
!~~~> Compute the function derivative with respect to T
|
|
IF (.NOT.Autonomous) THEN
|
|
CALL ros_FunTimeDerivative ( T, Roundoff, Y, &
|
|
Fcn0, dFdT )
|
|
END IF
|
|
|
|
!~~~> Compute the Jacobian at current time
|
|
CALL JacTemplate(T,Y,Jac0)
|
|
ISTATUS(Njac) = ISTATUS(Njac) + 1
|
|
|
|
!~~~> Repeat step calculation until current step accepted
|
|
UntilAccepted: DO
|
|
|
|
CALL ros_PrepareMatrix(H,Direction,ros_Gamma(1), &
|
|
Jac0,Ghimj,Pivot,Singular)
|
|
IF (Singular) THEN ! More than 5 consecutive failed decompositions
|
|
CALL ros_ErrorMsg(-8,T,H,IERR)
|
|
RETURN
|
|
END IF
|
|
|
|
!~~~> Compute the stages
|
|
Stage: DO istage = 1, ros_S
|
|
|
|
! Current istage offset. Current istage vector is K(ioffset+1:ioffset+NVAR)
|
|
ioffset = NVAR*(istage-1)
|
|
|
|
! For the 1st istage the function has been computed previously
|
|
IF ( istage == 1 ) THEN
|
|
CALL WCOPY(NVAR,Fcn0,1,Fcn,1)
|
|
IF (AdjointType == Adj_discrete) THEN ! Save stage solution
|
|
! CALL WCOPY(NVAR,Y,1,Ystage(1),1)
|
|
Ystage(1:NVAR) = Y(1:NVAR)
|
|
CALL WCOPY(NVAR,Y,1,Ynew,1)
|
|
END IF
|
|
! istage>1 and a new function evaluation is needed at the current istage
|
|
ELSEIF ( ros_NewF(istage) ) THEN
|
|
CALL WCOPY(NVAR,Y,1,Ynew,1)
|
|
DO j = 1, istage-1
|
|
CALL WAXPY(NVAR,ros_A((istage-1)*(istage-2)/2+j), &
|
|
K(NVAR*(j-1)+1),1,Ynew,1)
|
|
END DO
|
|
Tau = T + ros_Alpha(istage)*Direction*H
|
|
CALL FunTemplate(Tau,Ynew,Fcn)
|
|
ISTATUS(Nfun) = ISTATUS(Nfun) + 1
|
|
END IF ! if istage == 1 elseif ros_NewF(istage)
|
|
! save stage solution every time even if ynew is not updated
|
|
IF ( ( istage > 1 ).AND.(AdjointType == Adj_discrete) ) THEN
|
|
! CALL WCOPY(NVAR,Ynew,1,Ystage(ioffset+1),1)
|
|
Ystage(ioffset+1:ioffset+NVAR) = Ynew(1:NVAR)
|
|
END IF
|
|
CALL WCOPY(NVAR,Fcn,1,K(ioffset+1),1)
|
|
DO j = 1, istage-1
|
|
HC = ros_C((istage-1)*(istage-2)/2+j)/(Direction*H)
|
|
CALL WAXPY(NVAR,HC,K(NVAR*(j-1)+1),1,K(ioffset+1),1)
|
|
END DO
|
|
IF ((.NOT. Autonomous).AND.(ros_Gamma(istage).NE.ZERO)) THEN
|
|
HG = Direction*H*ros_Gamma(istage)
|
|
CALL WAXPY(NVAR,HG,dFdT,1,K(ioffset+1),1)
|
|
END IF
|
|
CALL ros_Solve('N', Ghimj, Pivot, K(ioffset+1))
|
|
|
|
END DO Stage
|
|
|
|
|
|
!~~~> Compute the new solution
|
|
CALL WCOPY(NVAR,Y,1,Ynew,1)
|
|
DO j=1,ros_S
|
|
CALL WAXPY(NVAR,ros_M(j),K(NVAR*(j-1)+1),1,Ynew,1)
|
|
END DO
|
|
|
|
!~~~> Compute the error estimation
|
|
CALL WSCAL(NVAR,ZERO,Yerr,1)
|
|
DO j=1,ros_S
|
|
CALL WAXPY(NVAR,ros_E(j),K(NVAR*(j-1)+1),1,Yerr,1)
|
|
END DO
|
|
Err = ros_ErrorNorm ( Y, Ynew, Yerr, AbsTol, RelTol, VectorTol )
|
|
|
|
!~~~> New step size is bounded by FacMin <= Hnew/H <= FacMax
|
|
Fac = MIN(FacMax,MAX(FacMin,FacSafe/Err**(ONE/ros_ELO)))
|
|
Hnew = H*Fac
|
|
|
|
!~~~> Check the error magnitude and adjust step size
|
|
ISTATUS(Nstp) = ISTATUS(Nstp) + 1
|
|
IF ( (Err <= ONE).OR.(H <= Hmin) ) THEN !~~~> Accept step
|
|
ISTATUS(Nacc) = ISTATUS(Nacc) + 1
|
|
IF (AdjointType == Adj_discrete) THEN ! Save current state
|
|
CALL ros_DPush( ros_S, T, H, Ystage, K, Ghimj, Pivot )
|
|
ELSEIF ( (AdjointType == Adj_continuous) .OR. &
|
|
(AdjointType == Adj_simple_continuous) ) THEN
|
|
#ifdef FULL_ALGEBRA
|
|
K = MATMUL(Jac0,Fcn0)
|
|
#else
|
|
CALL Jac_SP_Vec( Jac0, Fcn0, K(1) )
|
|
#endif
|
|
IF (.NOT. Autonomous) THEN
|
|
CALL WAXPY(NVAR,ONE,dFdT,1,K(1),1)
|
|
END IF
|
|
CALL ros_CPush( T, H, Y, Fcn0, K(1) )
|
|
END IF
|
|
CALL WCOPY(NVAR,Ynew,1,Y,1)
|
|
T = T + Direction*H
|
|
Hnew = MAX(Hmin,MIN(Hnew,Hmax))
|
|
IF (RejectLastH) THEN ! No step size increase after a rejected step
|
|
Hnew = MIN(Hnew,H)
|
|
END IF
|
|
RSTATUS(Nhexit) = H
|
|
RSTATUS(Nhnew) = Hnew
|
|
RSTATUS(Ntexit) = T
|
|
RejectLastH = .FALSE.
|
|
RejectMoreH = .FALSE.
|
|
H = Hnew
|
|
EXIT UntilAccepted ! EXIT THE LOOP: WHILE STEP NOT ACCEPTED
|
|
ELSE !~~~> Reject step
|
|
IF (RejectMoreH) THEN
|
|
Hnew = H*FacRej
|
|
END IF
|
|
RejectMoreH = RejectLastH
|
|
RejectLastH = .TRUE.
|
|
H = Hnew
|
|
IF (ISTATUS(Nacc) >= 1) THEN
|
|
ISTATUS(Nrej) = ISTATUS(Nrej) + 1
|
|
END IF
|
|
END IF ! Err <= 1
|
|
|
|
END DO UntilAccepted
|
|
|
|
END DO TimeLoop
|
|
|
|
!~~~> Save last state: only needed for continuous adjoint
|
|
IF ( (AdjointType == Adj_continuous) .OR. &
|
|
(AdjointType == Adj_simple_continuous) ) THEN
|
|
CALL FunTemplate(T,Y,Fcn0)
|
|
ISTATUS(Nfun) = ISTATUS(Nfun) + 1
|
|
CALL JacTemplate(T,Y,Jac0)
|
|
ISTATUS(Njac) = ISTATUS(Njac) + 1
|
|
#ifdef FULL_ALGEBRA
|
|
K = MATMUL(Jac0,Fcn0)
|
|
#else
|
|
CALL Jac_SP_Vec( Jac0, Fcn0, K(1) )
|
|
#endif
|
|
IF (.NOT. Autonomous) THEN
|
|
CALL ros_FunTimeDerivative ( T, Roundoff, Y, &
|
|
Fcn0, dFdT )
|
|
CALL WAXPY(NVAR,ONE,dFdT,1,K(1),1)
|
|
END IF
|
|
CALL ros_CPush( T, H, Y, Fcn0, K(1) )
|
|
!~~~> Deallocate stage buffer: only needed for discrete adjoint
|
|
ELSEIF (AdjointType == Adj_discrete) THEN
|
|
DEALLOCATE(Ystage, STAT=i)
|
|
IF (i/=0) THEN
|
|
PRINT*,'Deallocation of Ystage failed'
|
|
STOP
|
|
END IF
|
|
END IF
|
|
|
|
!~~~> Succesful exit
|
|
IERR = 1 !~~~> The integration was successful
|
|
|
|
END SUBROUTINE ros_FwdInt
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_DadjRateInt ( &
|
|
NADJ, Lambda, Lambda_R, &
|
|
Tstart, Tend, T, &
|
|
!~~~> Error indicator
|
|
IERR )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! Template for the implementation of a generic RosenbrockADJ method
|
|
! defined by ros_S (no of stages)
|
|
! and its coefficients ros_{A,C,M,E,Alpha,Gamma}
|
|
! The adjoint sensitivity of the solution with respect to NCOEFF selected
|
|
! reaction rate coefficients JCOEFF(1:NCOEFF) is also included
|
|
! Note: works only for autonomous systems, with fixed (in time) RCOEFF
|
|
! Based on the implementation of Daven K. Henze
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
!~~~> Contains dFun_dRcoeff, dJac_dRcoeff
|
|
USE gckpp_adj_STOICHIOM
|
|
! added logical switch (tww, 05/08/12)
|
|
USE LOGICAL_ADJ_MOD, ONLY : LADJ_RRATE
|
|
|
|
IMPLICIT NONE
|
|
|
|
!~~~> Input: the initial condition at Tstart; Output: the solution at T
|
|
INTEGER, INTENT(IN) :: NADJ
|
|
!~~~> First order adjoint
|
|
REAL(kind=dp), INTENT(INOUT) :: Lambda(NVAR,NADJ)
|
|
!!~~~> Input: integration interval
|
|
REAL(kind=dp), INTENT(IN) :: Tstart,Tend
|
|
!~~~> Output: time at which the solution is returned (T=Tend if success)
|
|
REAL(kind=dp), INTENT(OUT) :: T
|
|
!~~~> Output: Error indicator
|
|
INTEGER, INTENT(OUT) :: IERR
|
|
! ~~~~ Local variables
|
|
REAL(kind=dp) :: Ystage(NVAR*ros_S), K(NVAR*ros_S)
|
|
REAL(kind=dp) :: U(NVAR*ros_S,NADJ), V(NVAR*ros_S,NADJ)
|
|
#ifdef FULL_ALGEBRA
|
|
REAL(kind=dp), DIMENSION(NVAR,NVAR) :: Jac, dJdT, Ghimj
|
|
#else
|
|
REAL(kind=dp), DIMENSION(LU_NONZERO) :: Jac, dJdT, Ghimj
|
|
#endif
|
|
REAL(kind=dp) :: Hes0(NHESS)
|
|
REAL(kind=dp) :: Tmp(NVAR), Tmp2(NVAR)
|
|
REAL(kind=dp) :: H, HC, HA, Tau
|
|
INTEGER :: Pivot(NVAR), Direction
|
|
INTEGER :: i, j, m, istage, istart, jstart
|
|
!~~~> Local parameters
|
|
REAL(kind=dp), PARAMETER :: ZERO = 0.0d0, ONE = 1.0d0
|
|
REAL(kind=dp), PARAMETER :: DeltaMin = 1.0d-5
|
|
!~~~> Sensitivities w.r.t. reacton coefficients
|
|
REAL(kind=dp), INTENT(OUT) :: Lambda_R(NCOEFF,NADJ)
|
|
INTEGER :: icoeff, vstart
|
|
REAL(kind=dp) :: DFDR(NVAR*NCOEFF)
|
|
REAL(kind=dp) :: DJDR(NVAR*NCOEFF)
|
|
REAL(kind=dp) :: DJDR_O3dep(NVAR)
|
|
REAL(kind=dp) :: V_R(NCOEFF*ros_S,NADJ)
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
IF (.NOT.Autonomous) THEN
|
|
PRINT*,'ERROR: ros_DadjRateInt cannot handle NON-AUTONOMOUS systems'
|
|
STOP
|
|
END IF
|
|
|
|
IF (Tend >= Tstart) THEN
|
|
Direction = +1
|
|
ELSE
|
|
Direction = -1
|
|
END IF
|
|
|
|
!~~~> dkh Initialize added to 0d0 at the start of each loop
|
|
Lambda_R(:,:) = ZERO
|
|
DFDR(:) = ZERO
|
|
DJDR(:) = ZERO
|
|
DJDR_O3dep(:) = ZERO
|
|
V_R(:,:) = ZERO
|
|
|
|
!~~~> Time loop begins below
|
|
TimeLoop: DO WHILE ( stack_ptr > 0 )
|
|
|
|
!~~~> Recover checkpoints for stage values and vectors
|
|
CALL ros_DPop( ros_S, T, H, Ystage, K, Ghimj, Pivot )
|
|
|
|
! ISTATUS(Nstp) = ISTATUS(Nstp) + 1
|
|
|
|
!~~~> Compute LU decomposition
|
|
IF (.NOT.SaveLU) THEN
|
|
CALL JacTemplate(T,Ystage(1),Ghimj)
|
|
ISTATUS(Njac) = ISTATUS(Njac) + 1
|
|
Tau = ONE/(Direction*H*ros_Gamma(1))
|
|
#ifdef FULL_ALGEBRA
|
|
Ghimj(1:NVAR,1:NVAR) = -Ghimj(1:NVAR,1:NVAR)
|
|
DO i=1,NVAR
|
|
Ghimj(i,i) = Ghimj(i,i)+Tau
|
|
END DO
|
|
#else
|
|
CALL WSCAL(LU_NONZERO,(-ONE),Ghimj,1)
|
|
DO i=1,NVAR
|
|
Ghimj(LU_DIAG(i)) = Ghimj(LU_DIAG(i))+Tau
|
|
END DO
|
|
#endif
|
|
CALL ros_Decomp( Ghimj, Pivot, j )
|
|
END IF
|
|
|
|
!~~~> Compute Hessian at the beginning of the interval
|
|
CALL HessTemplate(T,Ystage(1),Hes0)
|
|
|
|
!~~~> Compute the stages
|
|
Stage: DO istage = ros_S, 1, -1
|
|
|
|
!~~~> Current istage first entry
|
|
istart = NVAR*(istage-1) + 1
|
|
|
|
!~~~> Compute U
|
|
DO m = 1,NADJ
|
|
CALL WCOPY(NVAR,Lambda(1,m),1,U(istart,m),1)
|
|
CALL WSCAL(NVAR,ros_M(istage),U(istart,m),1)
|
|
END DO ! m=1:NADJ
|
|
DO j = istage+1, ros_S
|
|
jstart = NVAR*(j-1) + 1
|
|
HA = ros_A((j-1)*(j-2)/2+istage)
|
|
HC = ros_C((j-1)*(j-2)/2+istage)/(Direction*H)
|
|
DO m = 1,NADJ
|
|
CALL WAXPY(NVAR,HA,V(jstart,m),1,U(istart,m),1)
|
|
CALL WAXPY(NVAR,HC,U(jstart,m),1,U(istart,m),1)
|
|
END DO ! m=1:NADJ
|
|
END DO
|
|
DO m = 1,NADJ
|
|
CALL ros_Solve('T', Ghimj, Pivot, U(istart,m))
|
|
END DO ! m=1:NADJ
|
|
!~~~> Compute V
|
|
Tau = T + ros_Alpha(istage)*Direction*H
|
|
CALL JacTemplate(Tau,Ystage(istart),Jac)
|
|
ISTATUS(Njac) = ISTATUS(Njac) + 1
|
|
|
|
! f_r(Y_istage)
|
|
CALL dFun_dRcoeff(Ystage(istart:istart+NVAR-1), FIX, NCOEFF, JCOEFF, DFDR)
|
|
!??CALL dJac_dRcoeff(Ystage(istart:istart+NVAR-1), FIX, K(istart:istart+NVAR-1),NCOEFF, JCOEFF, DJDR)
|
|
! don't need for just emissions (dkh, 03/31/10)
|
|
!! J_r(y_n) x K_istage
|
|
!CALL dJac_dRcoeff(Ystage(1:NVAR), FIX, K(istart:istart+NVAR-1),NCOEFF, JCOEFF, DJDR)
|
|
! added logical switch (tww, 05/08/12)
|
|
|
|
! Compute for all rxns
|
|
IF ( LADJ_RRATE ) THEN
|
|
CALL dJac_dRcoeff(Ystage(1:NVAR), FIX, K(istart:istart+NVAR-1),NCOEFF, JCOEFF, DJDR)
|
|
ELSE
|
|
! Default: Only compute for O3 depostion (needed for shipping emissions), which
|
|
! will be the last one.
|
|
CALL dJac_dRcoeff(Ystage(1:NVAR), FIX, K(istart:istart+NVAR-1),1, JCOEFF(NCOEFF), DJDR_O3dep)
|
|
ENDIF
|
|
|
|
DO m = 1,NADJ
|
|
#ifdef FULL_ALGEBRA
|
|
V(istart:istart+NVAR-1,m) = MATMUL(TRANSPOSE(Jac),U(istart:istart+NVAR-1,m))
|
|
#else
|
|
!----------------------------------------------------------------------
|
|
! Sensitivity w.r.t. reaction rate coefficients (dkh)
|
|
vstart = NCOEFF*(istage-1)
|
|
IF ( LADJ_RRATE ) THEN
|
|
DO icoeff = 1, NCOEFF
|
|
V_R(vstart+icoeff,m) = ZERO
|
|
DO j = 1, NVAR
|
|
!j = DMAP(icoeff)
|
|
! += f_r(Y_istage) * U_istage
|
|
V_R(vstart+icoeff,m) = V_R(vstart+icoeff,m) + DFDR(NVAR*(icoeff-1)+j)*U(istart+j-1,m)
|
|
|
|
!! dkh debug
|
|
!IF ( icoeff == NCOEFF ) THEN
|
|
! print*, ' DFDR j = ', DFDR(NVAR*(icoeff-1)+j), j
|
|
! print*, ' DJDR j = ', DJDR(NVAR*(icoeff-1)+j), j
|
|
!ENDIF
|
|
|
|
! don't need for just emissions (dkh, 03/31/10)
|
|
!! += ( J_r(y_n) x K_istage )^T * U_istage
|
|
!V_R(vstart+icoeff,m) = V_R(vstart+icoeff,m) + DJDR(NVAR*(icoeff-1)+j)*U(istart+j-1,m)
|
|
! also comment out calc of DJDR above !
|
|
! added logical switch (tww, 05/08/12)
|
|
V_R(vstart+icoeff,m) = V_R(vstart+icoeff,m) + DJDR(NVAR*(icoeff-1)+j)*U(istart+j-1,m)
|
|
END DO
|
|
END DO
|
|
ELSE
|
|
DO icoeff = 1, NCOEFF-1
|
|
V_R(vstart+icoeff,m) = ZERO
|
|
j = DMAP(icoeff)
|
|
! += f_r(Y_istage) * U_istage
|
|
V_R(vstart+icoeff,m) = V_R(vstart+icoeff,m) + DFDR(NVAR*(icoeff-1)+j)*U(istart+j-1,m)
|
|
! don't need for just emissions (dkh, 03/31/10)
|
|
!! += ( J_r(y_n) x K_istage )^T * U_istage
|
|
!V_R(vstart+icoeff,m) = V_R(vstart+icoeff,m) + DJDR(NVAR*(icoeff-1)+j)*U(istart+j-1,m)
|
|
END DO
|
|
|
|
! Now include O3 drydep to account for shipping emissions
|
|
icoeff = NCOEFF
|
|
V_R(vstart+icoeff,m) = ZERO
|
|
V_R(vstart+icoeff,m) = V_R(vstart+icoeff,m) &
|
|
+ DFDR(NVAR*(icoeff-1)+ind_O3 ) * U(istart+ind_O3 -1,m) &
|
|
+ DFDR(NVAR*(icoeff-1)+ind_DRYO3 ) * U(istart+ind_DRYO3 -1,m) &
|
|
+ DFDR(NVAR*(icoeff-1)+ind_DRYDEP) * U(istart+ind_DRYDEP-1,m) &
|
|
+ DJDR_O3dep(ind_O3 ) * U(istart+ind_O3 -1,m) &
|
|
+ DJDR_O3dep(ind_DRYO3 ) * U(istart+ind_DRYO3 -1,m) &
|
|
+ DJDR_O3dep(ind_DRYDEP) * U(istart+ind_DRYDEP-1,m)
|
|
|
|
!! dkh debug
|
|
!print *, ' DFDR(NVAR*(icoeff-1)+ind_O3 ) = ', DFDR(NVAR*(icoeff-1)+ind_O3 )
|
|
!print *, ' DFDR(NVAR*(icoeff-1)+ind_DRYO3 ) = ', DFDR(NVAR*(icoeff-1)+ind_DRYO3 )
|
|
!print *, ' DFDR(NVAR*(icoeff-1)+ind_DRYDEP) =', DFDR(NVAR*(icoeff-1)+ind_DRYDEP)
|
|
!print *, ' DJDR_O3dep(ind_O3 ) = ', DJDR_O3dep(ind_O3 )
|
|
!print *, ' DJDR_O3dep(ind_DRYO3 ) = ', DJDR_O3dep(ind_DRYO3 )
|
|
!print *, ' DJDR_O3dep(ind_DRYDEP) = ', DJDR_O3dep(ind_DRYDEP)
|
|
|
|
ENDIF
|
|
!----------------------------------------------------------------------
|
|
CALL JacTR_SP_Vec(Jac,U(istart,m),V(istart,m))
|
|
#endif
|
|
END DO ! m=1:NADJ
|
|
|
|
END DO Stage
|
|
|
|
!$$ IF (.NOT.Autonomous) THEN
|
|
!$$!~~~> Compute the Jacobian derivative with respect to T.
|
|
!$$! Last "Jac" computed for stage 1
|
|
!$$ CALL ros_JacTimeDerivative ( T, Roundoff, Ystage(1), Jac, dJdT )
|
|
!$$ END IF
|
|
|
|
!~~~> Compute the new solution
|
|
|
|
!~~~> Compute Lambda_R (dkh)
|
|
DO istage=1,ros_S
|
|
vstart = NCOEFF*(istage-1) + 1
|
|
DO m = 1,NADJ
|
|
! Sum_over_i f_r(Y_i)^T * U_i + (J_r x K_i)^T * U_i
|
|
CALL WAXPY(NCOEFF,ONE,V_R(vstart,m),1,Lambda_R(1,m),1)
|
|
END DO ! m=1:NADJ
|
|
END DO
|
|
|
|
|
|
!~~~> Compute Lambda
|
|
DO istage=1,ros_S
|
|
istart = NVAR*(istage-1) + 1
|
|
DO m = 1,NADJ
|
|
! Add V_i
|
|
CALL WAXPY(NVAR,ONE,V(istart,m),1,Lambda(1,m),1)
|
|
! Add (H0xK_i)^T * U_i
|
|
CALL HessTR_Vec ( Hes0, U(istart,m), K(istart), Tmp )
|
|
CALL WAXPY(NVAR,ONE,Tmp,1,Lambda(1,m),1)
|
|
END DO ! m=1:NADJ
|
|
END DO
|
|
! Add H * dJac_dT_0^T * \sum(gamma_i U_i)
|
|
! Tmp holds sum gamma_i U_i
|
|
!$$ IF (.NOT.Autonomous) THEN
|
|
!$$ DO m = 1,NADJ
|
|
!$$ Tmp(1:NVAR) = ZERO
|
|
!$$ DO istage = 1, ros_S
|
|
!$$ istart = NVAR*(istage-1) + 1
|
|
!$$ CALL WAXPY(NVAR,ros_Gamma(istage),U(istart,m),1,Tmp,1)
|
|
!$$ END DO
|
|
!$$#ifdef FULL_ALGEBRA
|
|
!$$ Tmp2 = MATMUL(TRANSPOSE(dJdT),Tmp)
|
|
!$$#else
|
|
!$$ CALL JacTR_SP_Vec(dJdT,Tmp,Tmp2)
|
|
!$$#endif
|
|
!$$ CALL WAXPY(NVAR,H,Tmp2,1,Lambda(1,m),1)
|
|
!$$ END DO ! m=1:NADJ
|
|
!$$ END IF ! .NOT.Autonomous
|
|
|
|
|
|
END DO TimeLoop
|
|
|
|
!~~~> Save last state
|
|
|
|
!~~~> Succesful exit
|
|
IERR = 1 !~~~> The integration was successful
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
END SUBROUTINE ros_DadjRateInt
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_DadjInt ( &
|
|
NADJ, Lambda, &
|
|
Tstart, Tend, T, &
|
|
!~~~> Error indicator
|
|
IERR )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! Template for the implementation of a generic RosenbrockADJ method
|
|
! defined by ros_S (no of stages)
|
|
! and its coefficients ros_{A,C,M,E,Alpha,Gamma}
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
IMPLICIT NONE
|
|
|
|
!~~~> Input: the initial condition at Tstart; Output: the solution at T
|
|
INTEGER, INTENT(IN) :: NADJ
|
|
!~~~> First order adjoint
|
|
REAL(kind=dp), INTENT(INOUT) :: Lambda(NVAR,NADJ)
|
|
!!~~~> Input: integration interval
|
|
REAL(kind=dp), INTENT(IN) :: Tstart,Tend
|
|
!~~~> Output: time at which the solution is returned (T=Tend if success)
|
|
REAL(kind=dp), INTENT(OUT) :: T
|
|
!~~~> Output: Error indicator
|
|
INTEGER, INTENT(OUT) :: IERR
|
|
! ~~~~ Local variables
|
|
REAL(kind=dp) :: Ystage(NVAR*ros_S), K(NVAR*ros_S)
|
|
REAL(kind=dp) :: U(NVAR*ros_S,NADJ), V(NVAR*ros_S,NADJ)
|
|
#ifdef FULL_ALGEBRA
|
|
REAL(kind=dp), DIMENSION(NVAR,NVAR) :: Jac, dJdT, Ghimj
|
|
#else
|
|
REAL(kind=dp), DIMENSION(LU_NONZERO) :: Jac, dJdT, Ghimj
|
|
#endif
|
|
REAL(kind=dp) :: Hes0(NHESS)
|
|
REAL(kind=dp) :: Tmp(NVAR), Tmp2(NVAR)
|
|
REAL(kind=dp) :: H, HC, HA, Tau
|
|
INTEGER :: Pivot(NVAR), Direction
|
|
INTEGER :: i, j, m, istage, istart, jstart
|
|
!~~~> Local parameters
|
|
REAL(kind=dp), PARAMETER :: ZERO = 0.0d0, ONE = 1.0d0
|
|
REAL(kind=dp), PARAMETER :: DeltaMin = 1.0d-5
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
|
|
|
IF (Tend >= Tstart) THEN
|
|
Direction = +1
|
|
ELSE
|
|
Direction = -1
|
|
END IF
|
|
|
|
!~~~> Time loop begins below
|
|
TimeLoop: DO WHILE ( stack_ptr > 0 )
|
|
|
|
!~~~> Recover checkpoints for stage values and vectors
|
|
CALL ros_DPop( ros_S, T, H, Ystage, K, Ghimj, Pivot )
|
|
|
|
! ISTATUS(Nstp) = ISTATUS(Nstp) + 1
|
|
|
|
!~~~> Compute LU decomposition
|
|
IF (.NOT.SaveLU) THEN
|
|
CALL JacTemplate(T,Ystage(1),Ghimj)
|
|
ISTATUS(Njac) = ISTATUS(Njac) + 1
|
|
Tau = ONE/(Direction*H*ros_Gamma(1))
|
|
#ifdef FULL_ALGEBRA
|
|
Ghimj(1:NVAR,1:NVAR) = -Ghimj(1:NVAR,1:NVAR)
|
|
DO i=1,NVAR
|
|
Ghimj(i,i) = Ghimj(i,i)+Tau
|
|
END DO
|
|
#else
|
|
CALL WSCAL(LU_NONZERO,(-ONE),Ghimj,1)
|
|
DO i=1,NVAR
|
|
Ghimj(LU_DIAG(i)) = Ghimj(LU_DIAG(i))+Tau
|
|
END DO
|
|
#endif
|
|
CALL ros_Decomp( Ghimj, Pivot, j )
|
|
END IF
|
|
|
|
!~~~> Compute Hessian at the beginning of the interval
|
|
CALL HessTemplate(T,Ystage(1),Hes0)
|
|
|
|
!~~~> Compute the stages
|
|
Stage: DO istage = ros_S, 1, -1
|
|
|
|
!~~~> Current istage first entry
|
|
istart = NVAR*(istage-1) + 1
|
|
|
|
!~~~> Compute U
|
|
DO m = 1,NADJ
|
|
CALL WCOPY(NVAR,Lambda(1,m),1,U(istart,m),1)
|
|
CALL WSCAL(NVAR,ros_M(istage),U(istart,m),1)
|
|
END DO ! m=1:NADJ
|
|
DO j = istage+1, ros_S
|
|
jstart = NVAR*(j-1) + 1
|
|
HA = ros_A((j-1)*(j-2)/2+istage)
|
|
HC = ros_C((j-1)*(j-2)/2+istage)/(Direction*H)
|
|
DO m = 1,NADJ
|
|
CALL WAXPY(NVAR,HA,V(jstart,m),1,U(istart,m),1)
|
|
CALL WAXPY(NVAR,HC,U(jstart,m),1,U(istart,m),1)
|
|
END DO ! m=1:NADJ
|
|
END DO
|
|
DO m = 1,NADJ
|
|
CALL ros_Solve('T', Ghimj, Pivot, U(istart,m))
|
|
END DO ! m=1:NADJ
|
|
!~~~> Compute V
|
|
Tau = T + ros_Alpha(istage)*Direction*H
|
|
CALL JacTemplate(Tau,Ystage(istart),Jac)
|
|
ISTATUS(Njac) = ISTATUS(Njac) + 1
|
|
DO m = 1,NADJ
|
|
#ifdef FULL_ALGEBRA
|
|
V(istart:istart+NVAR-1,m) = MATMUL(TRANSPOSE(Jac),U(istart:istart+NVAR-1,m))
|
|
#else
|
|
CALL JacTR_SP_Vec(Jac,U(istart,m),V(istart,m))
|
|
#endif
|
|
END DO ! m=1:NADJ
|
|
|
|
END DO Stage
|
|
|
|
IF (.NOT.Autonomous) THEN
|
|
!~~~> Compute the Jacobian derivative with respect to T.
|
|
! Last "Jac" computed for stage 1
|
|
CALL ros_JacTimeDerivative ( T, Roundoff, Ystage(1), Jac, dJdT )
|
|
END IF
|
|
|
|
!~~~> Compute the new solution
|
|
|
|
!~~~> Compute Lambda
|
|
DO istage=1,ros_S
|
|
istart = NVAR*(istage-1) + 1
|
|
DO m = 1,NADJ
|
|
! Add V_i
|
|
CALL WAXPY(NVAR,ONE,V(istart,m),1,Lambda(1,m),1)
|
|
! Add (H0xK_i)^T * U_i
|
|
CALL HessTR_Vec ( Hes0, U(istart,m), K(istart), Tmp )
|
|
CALL WAXPY(NVAR,ONE,Tmp,1,Lambda(1,m),1)
|
|
END DO ! m=1:NADJ
|
|
END DO
|
|
! Add H * dJac_dT_0^T * \sum(gamma_i U_i)
|
|
! Tmp holds sum gamma_i U_i
|
|
IF (.NOT.Autonomous) THEN
|
|
DO m = 1,NADJ
|
|
Tmp(1:NVAR) = ZERO
|
|
DO istage = 1, ros_S
|
|
istart = NVAR*(istage-1) + 1
|
|
CALL WAXPY(NVAR,ros_Gamma(istage),U(istart,m),1,Tmp,1)
|
|
END DO
|
|
#ifdef FULL_ALGEBRA
|
|
Tmp2 = MATMUL(TRANSPOSE(dJdT),Tmp)
|
|
#else
|
|
CALL JacTR_SP_Vec(dJdT,Tmp,Tmp2)
|
|
#endif
|
|
CALL WAXPY(NVAR,H,Tmp2,1,Lambda(1,m),1)
|
|
END DO ! m=1:NADJ
|
|
END IF ! .NOT.Autonomous
|
|
|
|
|
|
END DO TimeLoop
|
|
|
|
!~~~> Save last state
|
|
|
|
!~~~> Succesful exit
|
|
IERR = 1 !~~~> The integration was successful
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
END SUBROUTINE ros_DadjInt
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_CadjInt ( &
|
|
NADJ, Y, &
|
|
Tstart, Tend, T, &
|
|
AbsTol_adj, RelTol_adj, &
|
|
!~~~> Error indicator
|
|
IERR )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! Template for the implementation of a generic RosenbrockADJ method
|
|
! defined by ros_S (no of stages)
|
|
! and its coefficients ros_{A,C,M,E,Alpha,Gamma}
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
IMPLICIT NONE
|
|
|
|
!~~~> Input: the initial condition at Tstart; Output: the solution at T
|
|
INTEGER, INTENT(IN) :: NADJ
|
|
REAL(kind=dp), INTENT(INOUT) :: Y(NVAR,NADJ)
|
|
!~~~> Input: integration interval
|
|
REAL(kind=dp), INTENT(IN) :: Tstart,Tend
|
|
!~~~> Input: adjoint tolerances
|
|
REAL(kind=dp), INTENT(IN) :: AbsTol_adj(NVAR,NADJ), RelTol_adj(NVAR,NADJ)
|
|
!~~~> Output: time at which the solution is returned (T=Tend if success)
|
|
REAL(kind=dp), INTENT(OUT) :: T
|
|
!~~~> Output: Error indicator
|
|
INTEGER, INTENT(OUT) :: IERR
|
|
! ~~~~ Local variables
|
|
REAL(kind=dp) :: Y0(NVAR)
|
|
REAL(kind=dp) :: Ynew(NVAR,NADJ), Fcn0(NVAR,NADJ), Fcn(NVAR,NADJ)
|
|
REAL(kind=dp) :: K(NVAR*ros_S,NADJ), dFdT(NVAR,NADJ)
|
|
#ifdef FULL_ALGEBRA
|
|
REAL(kind=dp), DIMENSION(NVAR,NVAR) :: Jac0, Ghimj, Jac, dJdT
|
|
#else
|
|
REAL(kind=dp), DIMENSION(LU_NONZERO) :: Jac0, Ghimj, Jac, dJdT
|
|
#endif
|
|
REAL(kind=dp) :: H, Hnew, HC, HG, Fac, Tau
|
|
REAL(kind=dp) :: Err, Yerr(NVAR,NADJ)
|
|
INTEGER :: Pivot(NVAR), Direction, ioffset, j, istage, iadj
|
|
LOGICAL :: RejectLastH, RejectMoreH, Singular
|
|
!~~~> Local parameters
|
|
REAL(kind=dp), PARAMETER :: ZERO = 0.0d0, ONE = 1.0d0
|
|
REAL(kind=dp), PARAMETER :: DeltaMin = 1.0d-5
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
|
!~~~> Initial preparations
|
|
T = Tstart
|
|
RSTATUS(Nhexit) = 0.0_dp
|
|
H = MIN( MAX(ABS(Hmin),ABS(Hstart)) , ABS(Hmax) )
|
|
IF (ABS(H) <= 10.0_dp*Roundoff) H = DeltaMin
|
|
|
|
IF (Tend >= Tstart) THEN
|
|
Direction = +1
|
|
ELSE
|
|
Direction = -1
|
|
END IF
|
|
H = Direction*H
|
|
|
|
RejectLastH=.FALSE.
|
|
RejectMoreH=.FALSE.
|
|
|
|
!~~~> Time loop begins below
|
|
|
|
TimeLoop: DO WHILE ( (Direction > 0).AND.((T-Tend)+Roundoff*abs(Tend) <= ZERO) &
|
|
.OR. (Direction < 0).AND.((Tend-T)+Roundoff*abs(Tend) <= ZERO) ) ! Added *abs(Tend) by KS, A.Sandu for boundary cases
|
|
|
|
IF ( ISTATUS(Nstp) > Max_no_steps ) THEN ! Too many steps
|
|
CALL ros_ErrorMsg(-6,T,H,IERR)
|
|
RETURN
|
|
END IF
|
|
IF ( ((T+0.1d0*H) == T).OR.(H <= Roundoff) ) THEN ! Step size too small
|
|
CALL ros_ErrorMsg(-7,T,H,IERR)
|
|
RETURN
|
|
END IF
|
|
|
|
!~~~> Limit H if necessary to avoid going beyond Tend
|
|
RSTATUS(Nhexit) = H
|
|
H = MIN(H,ABS(Tend-T))
|
|
|
|
!~~~> Interpolate forward solution
|
|
CALL ros_cadj_Y( T, Y0 )
|
|
!~~~> Compute the Jacobian at current time
|
|
CALL JacTemplate(T, Y0, Jac0)
|
|
ISTATUS(Njac) = ISTATUS(Njac) + 1
|
|
|
|
!~~~> Compute the function derivative with respect to T
|
|
IF (.NOT.Autonomous) THEN
|
|
CALL ros_JacTimeDerivative ( T, Roundoff, Y0, &
|
|
Jac0, dJdT )
|
|
DO iadj = 1, NADJ
|
|
#ifdef FULL_ALGEBRA
|
|
dFdT(1:NVAR,iadj) = MATMUL(TRANSPOSE(dJdT),Y(1:NVAR,iadj))
|
|
#else
|
|
CALL JacTR_SP_Vec(dJdT,Y(1,iadj),dFdT(1,iadj))
|
|
#endif
|
|
CALL WSCAL(NVAR,(-ONE),dFdT(1,iadj),1)
|
|
END DO
|
|
END IF
|
|
|
|
!~~~> Ydot = -J^T*Y
|
|
#ifdef FULL_ALGEBRA
|
|
Jac0(1:NVAR,1:NVAR) = -Jac0(1:NVAR,1:NVAR)
|
|
#else
|
|
CALL WSCAL(LU_NONZERO,(-ONE),Jac0,1)
|
|
#endif
|
|
DO iadj = 1, NADJ
|
|
#ifdef FULL_ALGEBRA
|
|
Fcn0(1:NVAR,iadj) = MATMUL(TRANSPOSE(Jac0),Y(1:NVAR,iadj))
|
|
#else
|
|
CALL JacTR_SP_Vec(Jac0,Y(1,iadj),Fcn0(1,iadj))
|
|
#endif
|
|
END DO
|
|
|
|
!~~~> Repeat step calculation until current step accepted
|
|
UntilAccepted: DO
|
|
|
|
CALL ros_PrepareMatrix(H,Direction,ros_Gamma(1), &
|
|
Jac0,Ghimj,Pivot,Singular)
|
|
IF (Singular) THEN ! More than 5 consecutive failed decompositions
|
|
CALL ros_ErrorMsg(-8,T,H,IERR)
|
|
RETURN
|
|
END IF
|
|
|
|
!~~~> Compute the stages
|
|
Stage: DO istage = 1, ros_S
|
|
|
|
! Current istage offset. Current istage vector is K(ioffset+1:ioffset+NVAR)
|
|
ioffset = NVAR*(istage-1)
|
|
|
|
! For the 1st istage the function has been computed previously
|
|
IF ( istage == 1 ) THEN
|
|
DO iadj = 1, NADJ
|
|
CALL WCOPY(NVAR,Fcn0(1,iadj),1,Fcn(1,iadj),1)
|
|
END DO
|
|
! istage>1 and a new function evaluation is needed at the current istage
|
|
ELSEIF ( ros_NewF(istage) ) THEN
|
|
CALL WCOPY(NVAR*NADJ,Y,1,Ynew,1)
|
|
DO j = 1, istage-1
|
|
DO iadj = 1, NADJ
|
|
CALL WAXPY(NVAR,ros_A((istage-1)*(istage-2)/2+j), &
|
|
K(NVAR*(j-1)+1,iadj),1,Ynew(1,iadj),1)
|
|
END DO
|
|
END DO
|
|
Tau = T + ros_Alpha(istage)*Direction*H
|
|
! CALL FunTemplate(Tau,Ynew,Fcn)
|
|
! ISTATUS(Nfun) = ISTATUS(Nfun) + 1
|
|
CALL ros_cadj_Y( Tau, Y0 )
|
|
CALL JacTemplate(Tau, Y0, Jac)
|
|
ISTATUS(Njac) = ISTATUS(Njac) + 1
|
|
#ifdef FULL_ALGEBRA
|
|
Jac(1:NVAR,1:NVAR) = -Jac(1:NVAR,1:NVAR)
|
|
#else
|
|
CALL WSCAL(LU_NONZERO,(-ONE),Jac,1)
|
|
#endif
|
|
DO iadj = 1, NADJ
|
|
#ifdef FULL_ALGEBRA
|
|
Fcn(1:NVAR,iadj) = MATMUL(TRANSPOSE(Jac),Ynew(1:NVAR,iadj))
|
|
#else
|
|
CALL JacTR_SP_Vec(Jac,Ynew(1,iadj),Fcn(1,iadj))
|
|
#endif
|
|
!CALL WSCAL(NVAR,(-ONE),Fcn(1,iadj),1)
|
|
END DO
|
|
END IF ! if istage == 1 elseif ros_NewF(istage)
|
|
|
|
DO iadj = 1, NADJ
|
|
CALL WCOPY(NVAR,Fcn(1,iadj),1,K(ioffset+1,iadj),1)
|
|
END DO
|
|
DO j = 1, istage-1
|
|
HC = ros_C((istage-1)*(istage-2)/2+j)/(Direction*H)
|
|
DO iadj = 1, NADJ
|
|
CALL WAXPY(NVAR,HC,K(NVAR*(j-1)+1,iadj),1, &
|
|
K(ioffset+1,iadj),1)
|
|
END DO
|
|
END DO
|
|
IF ((.NOT. Autonomous).AND.(ros_Gamma(istage).NE.ZERO)) THEN
|
|
HG = Direction*H*ros_Gamma(istage)
|
|
DO iadj = 1, NADJ
|
|
CALL WAXPY(NVAR,HG,dFdT(1,iadj),1,K(ioffset+1,iadj),1)
|
|
END DO
|
|
END IF
|
|
DO iadj = 1, NADJ
|
|
CALL ros_Solve('T', Ghimj, Pivot, K(ioffset+1,iadj))
|
|
END DO
|
|
|
|
END DO Stage
|
|
|
|
|
|
!~~~> Compute the new solution
|
|
DO iadj = 1, NADJ
|
|
CALL WCOPY(NVAR,Y(1,iadj),1,Ynew(1,iadj),1)
|
|
DO j=1,ros_S
|
|
CALL WAXPY(NVAR,ros_M(j),K(NVAR*(j-1)+1,iadj),1,Ynew(1,iadj),1)
|
|
END DO
|
|
END DO
|
|
|
|
!~~~> Compute the error estimation
|
|
CALL WSCAL(NVAR*NADJ,ZERO,Yerr,1)
|
|
DO j=1,ros_S
|
|
DO iadj = 1, NADJ
|
|
CALL WAXPY(NVAR,ros_E(j),K(NVAR*(j-1)+1,iadj),1,Yerr(1,iadj),1)
|
|
END DO
|
|
END DO
|
|
!~~~> Max error among all adjoint components
|
|
iadj = 1
|
|
Err = ros_ErrorNorm ( Y(1,iadj), Ynew(1,iadj), Yerr(1,iadj), &
|
|
AbsTol_adj(1,iadj), RelTol_adj(1,iadj), VectorTol )
|
|
|
|
!~~~> New step size is bounded by FacMin <= Hnew/H <= FacMax
|
|
Fac = MIN(FacMax,MAX(FacMin,FacSafe/Err**(ONE/ros_ELO)))
|
|
Hnew = H*Fac
|
|
|
|
!~~~> Check the error magnitude and adjust step size
|
|
! ISTATUS(Nstp) = ISTATUS(Nstp) + 1
|
|
IF ( (Err <= ONE).OR.(H <= Hmin) ) THEN !~~~> Accept step
|
|
ISTATUS(Nacc) = ISTATUS(Nacc) + 1
|
|
CALL WCOPY(NVAR*NADJ,Ynew,1,Y,1)
|
|
T = T + Direction*H
|
|
Hnew = MAX(Hmin,MIN(Hnew,Hmax))
|
|
IF (RejectLastH) THEN ! No step size increase after a rejected step
|
|
Hnew = MIN(Hnew,H)
|
|
END IF
|
|
RSTATUS(Nhexit) = H
|
|
RSTATUS(Nhnew) = Hnew
|
|
RSTATUS(Ntexit) = T
|
|
RejectLastH = .FALSE.
|
|
RejectMoreH = .FALSE.
|
|
H = Hnew
|
|
EXIT UntilAccepted ! EXIT THE LOOP: WHILE STEP NOT ACCEPTED
|
|
ELSE !~~~> Reject step
|
|
IF (RejectMoreH) THEN
|
|
Hnew = H*FacRej
|
|
END IF
|
|
RejectMoreH = RejectLastH
|
|
RejectLastH = .TRUE.
|
|
H = Hnew
|
|
IF (ISTATUS(Nacc) >= 1) THEN
|
|
ISTATUS(Nrej) = ISTATUS(Nrej) + 1
|
|
END IF
|
|
END IF ! Err <= 1
|
|
|
|
END DO UntilAccepted
|
|
|
|
END DO TimeLoop
|
|
|
|
!~~~> Succesful exit
|
|
IERR = 1 !~~~> The integration was successful
|
|
|
|
END SUBROUTINE ros_CadjInt
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_SimpleCadjInt ( &
|
|
NADJ, Y, &
|
|
Tstart, Tend, T, &
|
|
!~~~> Error indicator
|
|
IERR )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! Template for the implementation of a generic RosenbrockADJ method
|
|
! defined by ros_S (no of stages)
|
|
! and its coefficients ros_{A,C,M,E,Alpha,Gamma}
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
IMPLICIT NONE
|
|
|
|
!~~~> Input: the initial condition at Tstart; Output: the solution at T
|
|
INTEGER, INTENT(IN) :: NADJ
|
|
REAL(kind=dp), INTENT(INOUT) :: Y(NVAR,NADJ)
|
|
!~~~> Input: integration interval
|
|
REAL(kind=dp), INTENT(IN) :: Tstart,Tend
|
|
!~~~> Output: time at which the solution is returned (T=Tend if success)
|
|
REAL(kind=dp), INTENT(OUT) :: T
|
|
!~~~> Output: Error indicator
|
|
INTEGER, INTENT(OUT) :: IERR
|
|
! ~~~~ Local variables
|
|
REAL(kind=dp) :: Y0(NVAR)
|
|
REAL(kind=dp) :: Ynew(NVAR,NADJ), Fcn0(NVAR,NADJ), Fcn(NVAR,NADJ)
|
|
REAL(kind=dp) :: K(NVAR*ros_S,NADJ), dFdT(NVAR,NADJ)
|
|
#ifdef FULL_ALGEBRA
|
|
REAL(kind=dp),DIMENSION(NVAR,NVAR) :: Jac0, Ghimj, Jac, dJdT
|
|
#else
|
|
REAL(kind=dp),DIMENSION(LU_NONZERO) :: Jac0, Ghimj, Jac, dJdT
|
|
#endif
|
|
REAL(kind=dp) :: H, HC, HG, Tau
|
|
REAL(kind=dp) :: ghinv
|
|
INTEGER :: Pivot(NVAR), Direction, ioffset, i, j, istage, iadj
|
|
INTEGER :: istack
|
|
!~~~> Local parameters
|
|
REAL(kind=dp), PARAMETER :: ZERO = 0.0d0, ONE = 1.0d0
|
|
REAL(kind=dp), PARAMETER :: DeltaMin = 1.0d-5
|
|
!~~~> Locally called functions
|
|
! REAL(kind=dp) WLAMCH
|
|
! EXTERNAL WLAMCH
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
|
!~~~> INITIAL PREPARATIONS
|
|
|
|
IF (Tend >= Tstart) THEN
|
|
Direction = -1
|
|
ELSE
|
|
Direction = +1
|
|
END IF
|
|
|
|
!~~~> Time loop begins below
|
|
TimeLoop: DO istack = stack_ptr,2,-1
|
|
|
|
T = chk_T(istack)
|
|
H = chk_H(istack-1)
|
|
!CALL WCOPY(NVAR,chk_Y(1,istack),1,Y0,1)
|
|
Y0(1:NVAR) = chk_Y(1:NVAR,istack)
|
|
|
|
!~~~> Compute the Jacobian at current time
|
|
CALL JacTemplate(T, Y0, Jac0)
|
|
ISTATUS(Njac) = ISTATUS(Njac) + 1
|
|
|
|
!~~~> Compute the function derivative with respect to T
|
|
IF (.NOT.Autonomous) THEN
|
|
CALL ros_JacTimeDerivative ( T, Roundoff, Y0, &
|
|
Jac0, dJdT )
|
|
DO iadj = 1, NADJ
|
|
#ifdef FULL_ALGEBRA
|
|
dFdT(1:NVAR,iadj) = MATMUL(TRANSPOSE(dJdT),Y(1:NVAR,iadj))
|
|
#else
|
|
CALL JacTR_SP_Vec(dJdT,Y(1,iadj),dFdT(1,iadj))
|
|
#endif
|
|
CALL WSCAL(NVAR,(-ONE),dFdT(1,iadj),1)
|
|
END DO
|
|
END IF
|
|
|
|
!~~~> Ydot = -J^T*Y
|
|
#ifdef FULL_ALGEBRA
|
|
Jac0(1:NVAR,1:NVAR) = -Jac0(1:NVAR,1:NVAR)
|
|
#else
|
|
CALL WSCAL(LU_NONZERO,(-ONE),Jac0,1)
|
|
#endif
|
|
DO iadj = 1, NADJ
|
|
#ifdef FULL_ALGEBRA
|
|
Fcn0(1:NVAR,iadj) = MATMUL(TRANSPOSE(Jac0),Y(1:NVAR,iadj))
|
|
#else
|
|
CALL JacTR_SP_Vec(Jac0,Y(1,iadj),Fcn0(1,iadj))
|
|
#endif
|
|
END DO
|
|
|
|
!~~~> Construct Ghimj = 1/(H*ham) - Jac0
|
|
ghinv = ONE/(Direction*H*ros_Gamma(1))
|
|
#ifdef FULL_ALGEBRA
|
|
Ghimj(1:NVAR,1:NVAR) = -Jac0(1:NVAR,1:NVAR)
|
|
DO i=1,NVAR
|
|
Ghimj(i,i) = Ghimj(i,i)+ghinv
|
|
END DO
|
|
#else
|
|
CALL WCOPY(LU_NONZERO,Jac0,1,Ghimj,1)
|
|
CALL WSCAL(LU_NONZERO,(-ONE),Ghimj,1)
|
|
DO i=1,NVAR
|
|
Ghimj(LU_DIAG(i)) = Ghimj(LU_DIAG(i))+ghinv
|
|
END DO
|
|
#endif
|
|
!~~~> Compute LU decomposition
|
|
CALL ros_Decomp( Ghimj, Pivot, j )
|
|
IF (j /= 0) THEN
|
|
CALL ros_ErrorMsg(-8,T,H,IERR)
|
|
PRINT*,' The matrix is singular !'
|
|
STOP
|
|
END IF
|
|
|
|
!~~~> Compute the stages
|
|
Stage: DO istage = 1, ros_S
|
|
|
|
! Current istage offset. Current istage vector is K(ioffset+1:ioffset+NVAR)
|
|
ioffset = NVAR*(istage-1)
|
|
|
|
! For the 1st istage the function has been computed previously
|
|
IF ( istage == 1 ) THEN
|
|
DO iadj = 1, NADJ
|
|
CALL WCOPY(NVAR,Fcn0(1,iadj),1,Fcn(1,iadj),1)
|
|
END DO
|
|
! istage>1 and a new function evaluation is needed at the current istage
|
|
ELSEIF ( ros_NewF(istage) ) THEN
|
|
CALL WCOPY(NVAR*NADJ,Y,1,Ynew,1)
|
|
DO j = 1, istage-1
|
|
DO iadj = 1, NADJ
|
|
CALL WAXPY(NVAR,ros_A((istage-1)*(istage-2)/2+j), &
|
|
K(NVAR*(j-1)+1,iadj),1,Ynew(1,iadj),1)
|
|
END DO
|
|
END DO
|
|
Tau = T + ros_Alpha(istage)*Direction*H
|
|
CALL ros_Hermite3( chk_T(istack-1), chk_T(istack), Tau, &
|
|
chk_Y(1:NVAR,istack-1), chk_Y(1:NVAR,istack), &
|
|
chk_dY(1:NVAR,istack-1), chk_dY(1:NVAR,istack), Y0 )
|
|
CALL JacTemplate(Tau, Y0, Jac)
|
|
ISTATUS(Njac) = ISTATUS(Njac) + 1
|
|
#ifdef FULL_ALGEBRA
|
|
Jac(1:NVAR,1:NVAR) = -Jac(1:NVAR,1:NVAR)
|
|
#else
|
|
CALL WSCAL(LU_NONZERO,(-ONE),Jac,1)
|
|
#endif
|
|
DO iadj = 1, NADJ
|
|
#ifdef FULL_ALGEBRA
|
|
Fcn(1:NVAR,iadj) = MATMUL(TRANSPOSE(Jac),Ynew(1:NVAR,iadj))
|
|
#else
|
|
CALL JacTR_SP_Vec(Jac,Ynew(1,iadj),Fcn(1,iadj))
|
|
#endif
|
|
END DO
|
|
END IF ! if istage == 1 elseif ros_NewF(istage)
|
|
|
|
DO iadj = 1, NADJ
|
|
CALL WCOPY(NVAR,Fcn(1,iadj),1,K(ioffset+1,iadj),1)
|
|
END DO
|
|
DO j = 1, istage-1
|
|
HC = ros_C((istage-1)*(istage-2)/2+j)/(Direction*H)
|
|
DO iadj = 1, NADJ
|
|
CALL WAXPY(NVAR,HC,K(NVAR*(j-1)+1,iadj),1, &
|
|
K(ioffset+1,iadj),1)
|
|
END DO
|
|
END DO
|
|
IF ((.NOT. Autonomous).AND.(ros_Gamma(istage).NE.ZERO)) THEN
|
|
HG = Direction*H*ros_Gamma(istage)
|
|
DO iadj = 1, NADJ
|
|
CALL WAXPY(NVAR,HG,dFdT(1,iadj),1,K(ioffset+1,iadj),1)
|
|
END DO
|
|
END IF
|
|
DO iadj = 1, NADJ
|
|
CALL ros_Solve('T', Ghimj, Pivot, K(ioffset+1,iadj))
|
|
END DO
|
|
|
|
END DO Stage
|
|
|
|
|
|
!~~~> Compute the new solution
|
|
DO iadj = 1, NADJ
|
|
DO j=1,ros_S
|
|
CALL WAXPY(NVAR,ros_M(j),K(NVAR*(j-1)+1,iadj),1,Y(1,iadj),1)
|
|
END DO
|
|
END DO
|
|
|
|
END DO TimeLoop
|
|
|
|
!~~~> Succesful exit
|
|
IERR = 1 !~~~> The integration was successful
|
|
|
|
END SUBROUTINE ros_SimpleCadjInt
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
REAL(kind=dp) FUNCTION ros_ErrorNorm ( Y, Ynew, Yerr, &
|
|
AbsTol, RelTol, VectorTol )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
!~~~> Computes the "scaled norm" of the error vector Yerr
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
IMPLICIT NONE
|
|
|
|
! Input arguments
|
|
REAL(kind=dp), INTENT(IN) :: Y(NVAR), Ynew(NVAR), &
|
|
Yerr(NVAR), AbsTol(NVAR), RelTol(NVAR)
|
|
LOGICAL, INTENT(IN) :: VectorTol
|
|
! Local variables
|
|
REAL(kind=dp) :: Err, Scale, Ymax
|
|
INTEGER :: i
|
|
|
|
Err = ZERO
|
|
DO i=1,NVAR
|
|
Ymax = MAX(ABS(Y(i)),ABS(Ynew(i)))
|
|
IF (VectorTol) THEN
|
|
Scale = AbsTol(i)+RelTol(i)*Ymax
|
|
ELSE
|
|
Scale = AbsTol(1)+RelTol(1)*Ymax
|
|
END IF
|
|
Err = Err+(Yerr(i)/Scale)**2
|
|
END DO
|
|
Err = SQRT(Err/NVAR)
|
|
|
|
ros_ErrorNorm = MAX(Err,1.0d-10)
|
|
|
|
END FUNCTION ros_ErrorNorm
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_FunTimeDerivative ( T, Roundoff, Y, Fcn0, dFdT )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
!~~~> The time partial derivative of the function by finite differences
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
IMPLICIT NONE
|
|
|
|
!~~~> Input arguments
|
|
REAL(kind=dp), INTENT(IN) :: T, Roundoff, Y(NVAR), Fcn0(NVAR)
|
|
!~~~> Output arguments
|
|
REAL(kind=dp), INTENT(OUT) :: dFdT(NVAR)
|
|
!~~~> Local variables
|
|
REAL(kind=dp) :: Delta
|
|
REAL(kind=dp), PARAMETER :: ONE = 1.0d0, DeltaMin = 1.0d-6
|
|
|
|
Delta = SQRT(Roundoff)*MAX(DeltaMin,ABS(T))
|
|
CALL FunTemplate(T+Delta,Y,dFdT)
|
|
ISTATUS(Nfun) = ISTATUS(Nfun) + 1
|
|
CALL WAXPY(NVAR,(-ONE),Fcn0,1,dFdT,1)
|
|
CALL WSCAL(NVAR,(ONE/Delta),dFdT,1)
|
|
|
|
END SUBROUTINE ros_FunTimeDerivative
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_JacTimeDerivative ( T, Roundoff, Y, &
|
|
Jac0, dJdT )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
!~~~> The time partial derivative of the Jacobian by finite differences
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
IMPLICIT NONE
|
|
|
|
!~~~> Arguments
|
|
REAL(kind=dp), INTENT(IN) :: T, Roundoff, Y(NVAR)
|
|
#ifdef FULL_ALGEBRA
|
|
REAL(kind=dp), INTENT(IN) :: Jac0(NVAR,NVAR)
|
|
REAL(kind=dp), INTENT(OUT) :: dJdT(NVAR,NVAR)
|
|
#else
|
|
REAL(kind=dp), INTENT(IN) :: Jac0(LU_NONZERO)
|
|
REAL(kind=dp), INTENT(OUT) :: dJdT(LU_NONZERO)
|
|
#endif
|
|
!~~~> Local variables
|
|
REAL(kind=dp) :: Delta
|
|
|
|
Delta = SQRT(Roundoff)*MAX(DeltaMin,ABS(T))
|
|
CALL JacTemplate(T+Delta,Y,dJdT)
|
|
ISTATUS(Njac) = ISTATUS(Njac) + 1
|
|
#ifdef FULL_ALGEBRA
|
|
CALL WAXPY(NVAR*NVAR,(-ONE),Jac0,1,dJdT,1)
|
|
CALL WSCAL(NVAR*NVAR,(ONE/Delta),dJdT,1)
|
|
#else
|
|
CALL WAXPY(LU_NONZERO,(-ONE),Jac0,1,dJdT,1)
|
|
CALL WSCAL(LU_NONZERO,(ONE/Delta),dJdT,1)
|
|
#endif
|
|
|
|
END SUBROUTINE ros_JacTimeDerivative
|
|
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_PrepareMatrix ( H, Direction, gam, &
|
|
Jac0, Ghimj, Pivot, Singular )
|
|
! --- --- --- --- --- --- --- --- --- --- --- --- ---
|
|
! Prepares the LHS matrix for stage calculations
|
|
! 1. Construct Ghimj = 1/(H*gam) - Jac0
|
|
! "(Gamma H) Inverse Minus Jacobian"
|
|
! 2. Repeat LU decomposition of Ghimj until successful.
|
|
! -half the step size if LU decomposition fails and retry
|
|
! -exit after 5 consecutive fails
|
|
! --- --- --- --- --- --- --- --- --- --- --- --- ---
|
|
IMPLICIT NONE
|
|
|
|
!~~~> Input arguments
|
|
#ifdef FULL_ALGEBRA
|
|
REAL(kind=dp), INTENT(IN) :: Jac0(NVAR,NVAR)
|
|
#else
|
|
REAL(kind=dp), INTENT(IN) :: Jac0(LU_NONZERO)
|
|
#endif
|
|
REAL(kind=dp), INTENT(IN) :: gam
|
|
INTEGER, INTENT(IN) :: Direction
|
|
!~~~> Output arguments
|
|
#ifdef FULL_ALGEBRA
|
|
REAL(kind=dp), INTENT(OUT) :: Ghimj(NVAR,NVAR)
|
|
#else
|
|
REAL(kind=dp), INTENT(OUT) :: Ghimj(LU_NONZERO)
|
|
#endif
|
|
LOGICAL, INTENT(OUT) :: Singular
|
|
INTEGER, INTENT(OUT) :: Pivot(NVAR)
|
|
!~~~> Inout arguments
|
|
REAL(kind=dp), INTENT(INOUT) :: H ! step size is decreased when LU fails
|
|
!~~~> Local variables
|
|
INTEGER :: i, ising, Nconsecutive
|
|
REAL(kind=dp) :: ghinv
|
|
REAL(kind=dp), PARAMETER :: ONE = 1.0_dp, HALF = 0.5_dp
|
|
|
|
Nconsecutive = 0
|
|
Singular = .TRUE.
|
|
|
|
DO WHILE (Singular)
|
|
|
|
!~~~> Construct Ghimj = 1/(H*gam) - Jac0
|
|
#ifdef FULL_ALGEBRA
|
|
CALL WCOPY(NVAR*NVAR,Jac0,1,Ghimj,1)
|
|
CALL WSCAL(NVAR*NVAR,(-ONE),Ghimj,1)
|
|
ghinv = ONE/(Direction*H*gam)
|
|
DO i=1,NVAR
|
|
Ghimj(i,i) = Ghimj(i,i)+ghinv
|
|
END DO
|
|
#else
|
|
CALL WCOPY(LU_NONZERO,Jac0,1,Ghimj,1)
|
|
CALL WSCAL(LU_NONZERO,(-ONE),Ghimj,1)
|
|
ghinv = ONE/(Direction*H*gam)
|
|
DO i=1,NVAR
|
|
Ghimj(LU_DIAG(i)) = Ghimj(LU_DIAG(i))+ghinv
|
|
END DO
|
|
#endif
|
|
!~~~> Compute LU decomposition
|
|
CALL ros_Decomp( Ghimj, Pivot, ising )
|
|
IF (ising == 0) THEN
|
|
!~~~> If successful done
|
|
Singular = .FALSE.
|
|
ELSE ! ising .ne. 0
|
|
!~~~> If unsuccessful half the step size; if 5 consecutive fails then return
|
|
ISTATUS(Nsng) = ISTATUS(Nsng) + 1
|
|
Nconsecutive = Nconsecutive+1
|
|
Singular = .TRUE.
|
|
PRINT*,'Warning: LU Decomposition returned ising = ',ising
|
|
IF (Nconsecutive <= 5) THEN ! Less than 5 consecutive failed decompositions
|
|
H = H*HALF
|
|
ELSE ! More than 5 consecutive failed decompositions
|
|
RETURN
|
|
END IF ! Nconsecutive
|
|
END IF ! ising
|
|
|
|
END DO ! WHILE Singular
|
|
|
|
END SUBROUTINE ros_PrepareMatrix
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_Decomp( A, Pivot, ising )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! Template for the LU decomposition
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
IMPLICIT NONE
|
|
!~~~> Inout variables
|
|
#ifdef FULL_ALGEBRA
|
|
REAL(kind=dp), INTENT(INOUT) :: A(NVAR,NVAR)
|
|
#else
|
|
REAL(kind=dp), INTENT(INOUT) :: A(LU_NONZERO)
|
|
#endif
|
|
!~~~> Output variables
|
|
INTEGER, INTENT(OUT) :: Pivot(NVAR), ising
|
|
|
|
#ifdef FULL_ALGEBRA
|
|
CALL DGETRF( NVAR, NVAR, A, NVAR, Pivot, ising )
|
|
#else
|
|
CALL KppDecomp ( A, ising )
|
|
Pivot(1) = 1
|
|
#endif
|
|
ISTATUS(Ndec) = ISTATUS(Ndec) + 1
|
|
|
|
END SUBROUTINE ros_Decomp
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_Solve( How, A, Pivot, b )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! Template for the forward/backward substitution (using pre-computed LU decomposition)
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
IMPLICIT NONE
|
|
!~~~> Input variables
|
|
CHARACTER, INTENT(IN) :: How
|
|
#ifdef FULL_ALGEBRA
|
|
REAL(kind=dp), INTENT(IN) :: A(NVAR,NVAR)
|
|
#else
|
|
REAL(kind=dp), INTENT(IN) :: A(LU_NONZERO)
|
|
#endif
|
|
INTEGER, INTENT(IN) :: Pivot(NVAR)
|
|
!~~~> InOut variables
|
|
REAL(kind=dp), INTENT(INOUT) :: b(NVAR)
|
|
|
|
SELECT CASE (How)
|
|
CASE ('N')
|
|
#ifdef FULL_ALGEBRA
|
|
CALL DGETRS( 'N', NVAR , 1, A, NVAR, Pivot, b, NVAR, 0 )
|
|
#else
|
|
CALL KppSolve( A, b )
|
|
#endif
|
|
CASE ('T')
|
|
#ifdef FULL_ALGEBRA
|
|
CALL DGETRS( 'T', NVAR , 1, A, NVAR, Pivot, b, NVAR, 0 )
|
|
#else
|
|
CALL KppSolveTR( A, b, b )
|
|
#endif
|
|
CASE DEFAULT
|
|
PRINT*,'Error: unknown argument in ros_Solve: How=',How
|
|
STOP
|
|
END SELECT
|
|
ISTATUS(Nsol) = ISTATUS(Nsol) + 1
|
|
|
|
END SUBROUTINE ros_Solve
|
|
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_cadj_Y( T, Y )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! Finds the solution Y at T by interpolating the stored forward trajectory
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
IMPLICIT NONE
|
|
!~~~> Input variables
|
|
REAL(kind=dp), INTENT(IN) :: T
|
|
!~~~> Output variables
|
|
REAL(kind=dp), INTENT(OUT) :: Y(NVAR)
|
|
!~~~> Local variables
|
|
INTEGER :: i
|
|
REAL(kind=dp), PARAMETER :: ONE = 1.0d0
|
|
|
|
! chk_H, chk_T, chk_Y, chk_dY, chk_d2Y
|
|
|
|
IF( (T < chk_T(1)).OR.(T> chk_T(stack_ptr)) ) THEN
|
|
PRINT*,'Cannot locate solution at T = ',T
|
|
PRINT*,'Stored trajectory is between Tstart = ',chk_T(1)
|
|
PRINT*,' and Tend = ',chk_T(stack_ptr)
|
|
STOP
|
|
END IF
|
|
DO i = 1, stack_ptr-1
|
|
IF( (T>= chk_T(i)).AND.(T<= chk_T(i+1)) ) EXIT
|
|
END DO
|
|
|
|
|
|
! IF (.FALSE.) THEN
|
|
!
|
|
! CALL ros_Hermite5( chk_T(i), chk_T(i+1), T, &
|
|
! chk_Y(1,i), chk_Y(1,i+1), &
|
|
! chk_dY(1,i), chk_dY(1,i+1), &
|
|
! chk_d2Y(1,i), chk_d2Y(1,i+1), Y )
|
|
!
|
|
! ELSE
|
|
|
|
CALL ros_Hermite3( chk_T(i), chk_T(i+1), T, &
|
|
chk_Y(1:NVAR,i), chk_Y(1:NVAR,i+1), &
|
|
chk_dY(1:NVAR,i), chk_dY(1:NVAR,i+1), &
|
|
Y )
|
|
|
|
!
|
|
! END IF
|
|
|
|
END SUBROUTINE ros_cadj_Y
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_Hermite3( a, b, T, Ya, Yb, Ja, Jb, Y )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! Template for Hermite interpolation of order 5 on the interval [a,b]
|
|
! P = c(1) + c(2)*(x-a) + ... + c(4)*(x-a)^3
|
|
! P[a,b] = [Ya,Yb], P'[a,b] = [Ja,Jb]
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
IMPLICIT NONE
|
|
!~~~> Input variables
|
|
REAL(kind=dp), INTENT(IN) :: a, b, T, Ya(NVAR), Yb(NVAR)
|
|
REAL(kind=dp), INTENT(IN) :: Ja(NVAR), Jb(NVAR)
|
|
!~~~> Output variables
|
|
REAL(kind=dp), INTENT(OUT) :: Y(NVAR)
|
|
!~~~> Local variables
|
|
REAL(kind=dp) :: Tau, amb(3), C(NVAR,4)
|
|
REAL(kind=dp), PARAMETER :: ZERO = 0.0d0
|
|
INTEGER :: i, j
|
|
|
|
amb(1) = 1.0d0/(a-b)
|
|
DO i=2,3
|
|
amb(i) = amb(i-1)*amb(1)
|
|
END DO
|
|
|
|
|
|
! c(1) = ya;
|
|
CALL WCOPY(NVAR,Ya,1,C(1,1),1)
|
|
! c(2) = ja;
|
|
CALL WCOPY(NVAR,Ja,1,C(1,2),1)
|
|
! c(3) = 2/(a-b)*ja + 1/(a-b)*jb - 3/(a - b)^2*ya + 3/(a - b)^2*yb ;
|
|
CALL WCOPY(NVAR,Ya,1,C(1,3),1)
|
|
CALL WSCAL(NVAR,-3.0*amb(2),C(1,3),1)
|
|
CALL WAXPY(NVAR,3.0*amb(2),Yb,1,C(1,3),1)
|
|
CALL WAXPY(NVAR,2.0*amb(1),Ja,1,C(1,3),1)
|
|
CALL WAXPY(NVAR,amb(1),Jb,1,C(1,3),1)
|
|
! c(4) = 1/(a-b)^2*ja + 1/(a-b)^2*jb - 2/(a-b)^3*ya + 2/(a-b)^3*yb ;
|
|
CALL WCOPY(NVAR,Ya,1,C(1,4),1)
|
|
CALL WSCAL(NVAR,-2.0*amb(3),C(1,4),1)
|
|
CALL WAXPY(NVAR,2.0*amb(3),Yb,1,C(1,4),1)
|
|
CALL WAXPY(NVAR,amb(2),Ja,1,C(1,4),1)
|
|
CALL WAXPY(NVAR,amb(2),Jb,1,C(1,4),1)
|
|
|
|
Tau = T - a
|
|
CALL WCOPY(NVAR,C(1,4),1,Y,1)
|
|
CALL WSCAL(NVAR,Tau**3,Y,1)
|
|
DO j = 3,1,-1
|
|
CALL WAXPY(NVAR,TAU**(j-1),C(1,j),1,Y,1)
|
|
END DO
|
|
|
|
END SUBROUTINE ros_Hermite3
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE ros_Hermite5( a, b, T, Ya, Yb, Ja, Jb, Ha, Hb, Y )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! Template for Hermite interpolation of order 5 on the interval [a,b]
|
|
! P = c(1) + c(2)*(x-a) + ... + c(6)*(x-a)^5
|
|
! P[a,b] = [Ya,Yb], P'[a,b] = [Ja,Jb], P"[a,b] = [Ha,Hb]
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
IMPLICIT NONE
|
|
!~~~> Input variables
|
|
REAL(kind=dp), INTENT(IN) :: a, b, T, Ya(NVAR), Yb(NVAR)
|
|
REAL(kind=dp), INTENT(IN) :: Ja(NVAR), Jb(NVAR), Ha(NVAR), Hb(NVAR)
|
|
!~~~> Output variables
|
|
REAL(kind=dp), INTENT(OUT) :: Y(NVAR)
|
|
!~~~> Local variables
|
|
REAL(kind=dp) :: Tau, amb(5), C(NVAR,6)
|
|
REAL(kind=dp), PARAMETER :: ZERO = 0.0d0, HALF = 0.5d0
|
|
INTEGER :: i, j
|
|
|
|
amb(1) = 1.0d0/(a-b)
|
|
DO i=2,5
|
|
amb(i) = amb(i-1)*amb(1)
|
|
END DO
|
|
|
|
! c(1) = ya;
|
|
CALL WCOPY(NVAR,Ya,1,C(1,1),1)
|
|
! c(2) = ja;
|
|
CALL WCOPY(NVAR,Ja,1,C(1,2),1)
|
|
! c(3) = ha/2;
|
|
CALL WCOPY(NVAR,Ha,1,C(1,3),1)
|
|
CALL WSCAL(NVAR,HALF,C(1,3),1)
|
|
|
|
! c(4) = 10*amb(3)*ya - 10*amb(3)*yb - 6*amb(2)*ja - 4*amb(2)*jb + 1.5*amb(1)*ha - 0.5*amb(1)*hb ;
|
|
CALL WCOPY(NVAR,Ya,1,C(1,4),1)
|
|
CALL WSCAL(NVAR,10.0*amb(3),C(1,4),1)
|
|
CALL WAXPY(NVAR,-10.0*amb(3),Yb,1,C(1,4),1)
|
|
CALL WAXPY(NVAR,-6.0*amb(2),Ja,1,C(1,4),1)
|
|
CALL WAXPY(NVAR,-4.0*amb(2),Jb,1,C(1,4),1)
|
|
CALL WAXPY(NVAR, 1.5*amb(1),Ha,1,C(1,4),1)
|
|
CALL WAXPY(NVAR,-0.5*amb(1),Hb,1,C(1,4),1)
|
|
|
|
! c(5) = 15*amb(4)*ya - 15*amb(4)*yb - 8.*amb(3)*ja - 7*amb(3)*jb + 1.5*amb(2)*ha - 1*amb(2)*hb ;
|
|
CALL WCOPY(NVAR,Ya,1,C(1,5),1)
|
|
CALL WSCAL(NVAR, 15.0*amb(4),C(1,5),1)
|
|
CALL WAXPY(NVAR,-15.0*amb(4),Yb,1,C(1,5),1)
|
|
CALL WAXPY(NVAR,-8.0*amb(3),Ja,1,C(1,5),1)
|
|
CALL WAXPY(NVAR,-7.0*amb(3),Jb,1,C(1,5),1)
|
|
CALL WAXPY(NVAR,1.5*amb(2),Ha,1,C(1,5),1)
|
|
CALL WAXPY(NVAR,-amb(2),Hb,1,C(1,5),1)
|
|
|
|
! c(6) = 6*amb(5)*ya - 6*amb(5)*yb - 3.*amb(4)*ja - 3.*amb(4)*jb + 0.5*amb(3)*ha -0.5*amb(3)*hb ;
|
|
CALL WCOPY(NVAR,Ya,1,C(1,6),1)
|
|
CALL WSCAL(NVAR, 6.0*amb(5),C(1,6),1)
|
|
CALL WAXPY(NVAR,-6.0*amb(5),Yb,1,C(1,6),1)
|
|
CALL WAXPY(NVAR,-3.0*amb(4),Ja,1,C(1,6),1)
|
|
CALL WAXPY(NVAR,-3.0*amb(4),Jb,1,C(1,6),1)
|
|
CALL WAXPY(NVAR, 0.5*amb(3),Ha,1,C(1,6),1)
|
|
CALL WAXPY(NVAR,-0.5*amb(3),Hb,1,C(1,6),1)
|
|
|
|
Tau = T - a
|
|
CALL WCOPY(NVAR,C(1,6),1,Y,1)
|
|
DO j = 5,1,-1
|
|
CALL WSCAL(NVAR,Tau,Y,1)
|
|
CALL WAXPY(NVAR,ONE,C(1,j),1,Y,1)
|
|
END DO
|
|
|
|
END SUBROUTINE ros_Hermite5
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE Ros2
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! --- AN L-STABLE METHOD, 2 stages, order 2
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
IMPLICIT NONE
|
|
DOUBLE PRECISION g
|
|
|
|
g = 1.0d0 + 1.0d0/SQRT(2.0d0)
|
|
|
|
rosMethod = RS2
|
|
!~~~> Name of the method
|
|
ros_Name = 'ROS-2'
|
|
!~~~> Number of stages
|
|
ros_S = 2
|
|
|
|
!~~~> The coefficient matrices A and C are strictly lower triangular.
|
|
! The lower triangular (subdiagonal) elements are stored in row-wise order:
|
|
! A(2,1) = ros_A(1), A(3,1)=ros_A(2), A(3,2)=ros_A(3), etc.
|
|
! The general mapping formula is:
|
|
! A(i,j) = ros_A( (i-1)*(i-2)/2 + j )
|
|
! C(i,j) = ros_C( (i-1)*(i-2)/2 + j )
|
|
|
|
ros_A(1) = (1.d0)/g
|
|
ros_C(1) = (-2.d0)/g
|
|
!~~~> Does the stage i require a new function evaluation (ros_NewF(i)=TRUE)
|
|
! or does it re-use the function evaluation from stage i-1 (ros_NewF(i)=FALSE)
|
|
ros_NewF(1) = .TRUE.
|
|
ros_NewF(2) = .TRUE.
|
|
!~~~> M_i = Coefficients for new step solution
|
|
ros_M(1)= (3.d0)/(2.d0*g)
|
|
ros_M(2)= (1.d0)/(2.d0*g)
|
|
! E_i = Coefficients for error estimator
|
|
ros_E(1) = 1.d0/(2.d0*g)
|
|
ros_E(2) = 1.d0/(2.d0*g)
|
|
!~~~> ros_ELO = estimator of local order - the minimum between the
|
|
! main and the embedded scheme orders plus one
|
|
ros_ELO = 2.0d0
|
|
!~~~> Y_stage_i ~ Y( T + H*Alpha_i )
|
|
ros_Alpha(1) = 0.0d0
|
|
ros_Alpha(2) = 1.0d0
|
|
!~~~> Gamma_i = \sum_j gamma_{i,j}
|
|
ros_Gamma(1) = g
|
|
ros_Gamma(2) =-g
|
|
|
|
END SUBROUTINE Ros2
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE Ros3
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! --- AN L-STABLE METHOD, 3 stages, order 3, 2 function evaluations
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
IMPLICIT NONE
|
|
|
|
rosMethod = RS3
|
|
!~~~> Name of the method
|
|
ros_Name = 'ROS-3'
|
|
!~~~> Number of stages
|
|
ros_S = 3
|
|
|
|
!~~~> The coefficient matrices A and C are strictly lower triangular.
|
|
! The lower triangular (subdiagonal) elements are stored in row-wise order:
|
|
! A(2,1) = ros_A(1), A(3,1)=ros_A(2), A(3,2)=ros_A(3), etc.
|
|
! The general mapping formula is:
|
|
! A(i,j) = ros_A( (i-1)*(i-2)/2 + j )
|
|
! C(i,j) = ros_C( (i-1)*(i-2)/2 + j )
|
|
|
|
ros_A(1)= 1.d0
|
|
ros_A(2)= 1.d0
|
|
ros_A(3)= 0.d0
|
|
|
|
ros_C(1) = -0.10156171083877702091975600115545d+01
|
|
ros_C(2) = 0.40759956452537699824805835358067d+01
|
|
ros_C(3) = 0.92076794298330791242156818474003d+01
|
|
!~~~> Does the stage i require a new function evaluation (ros_NewF(i)=TRUE)
|
|
! or does it re-use the function evaluation from stage i-1 (ros_NewF(i)=FALSE)
|
|
ros_NewF(1) = .TRUE.
|
|
ros_NewF(2) = .TRUE.
|
|
ros_NewF(3) = .FALSE.
|
|
!~~~> M_i = Coefficients for new step solution
|
|
ros_M(1) = 0.1d+01
|
|
ros_M(2) = 0.61697947043828245592553615689730d+01
|
|
ros_M(3) = -0.42772256543218573326238373806514d+00
|
|
! E_i = Coefficients for error estimator
|
|
ros_E(1) = 0.5d+00
|
|
ros_E(2) = -0.29079558716805469821718236208017d+01
|
|
ros_E(3) = 0.22354069897811569627360909276199d+00
|
|
!~~~> ros_ELO = estimator of local order - the minimum between the
|
|
! main and the embedded scheme orders plus 1
|
|
ros_ELO = 3.0d0
|
|
!~~~> Y_stage_i ~ Y( T + H*Alpha_i )
|
|
ros_Alpha(1)= 0.0d+00
|
|
ros_Alpha(2)= 0.43586652150845899941601945119356d+00
|
|
ros_Alpha(3)= 0.43586652150845899941601945119356d+00
|
|
!~~~> Gamma_i = \sum_j gamma_{i,j}
|
|
ros_Gamma(1)= 0.43586652150845899941601945119356d+00
|
|
ros_Gamma(2)= 0.24291996454816804366592249683314d+00
|
|
ros_Gamma(3)= 0.21851380027664058511513169485832d+01
|
|
|
|
END SUBROUTINE Ros3
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE Ros4
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! L-STABLE ROSENBROCK METHOD OF ORDER 4, WITH 4 STAGES
|
|
! L-STABLE EMBEDDED ROSENBROCK METHOD OF ORDER 3
|
|
!
|
|
! E. HAIRER AND G. WANNER, SOLVING ORDINARY DIFFERENTIAL
|
|
! EQUATIONS II. STIFF AND DIFFERENTIAL-ALGEBRAIC PROBLEMS.
|
|
! SPRINGER SERIES IN COMPUTATIONAL MATHEMATICS,
|
|
! SPRINGER-VERLAG (1990)
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
IMPLICIT NONE
|
|
|
|
rosMethod = RS4
|
|
!~~~> Name of the method
|
|
ros_Name = 'ROS-4'
|
|
!~~~> Number of stages
|
|
ros_S = 4
|
|
|
|
!~~~> The coefficient matrices A and C are strictly lower triangular.
|
|
! The lower triangular (subdiagonal) elements are stored in row-wise order:
|
|
! A(2,1) = ros_A(1), A(3,1)=ros_A(2), A(3,2)=ros_A(3), etc.
|
|
! The general mapping formula is:
|
|
! A(i,j) = ros_A( (i-1)*(i-2)/2 + j )
|
|
! C(i,j) = ros_C( (i-1)*(i-2)/2 + j )
|
|
|
|
ros_A(1) = 0.2000000000000000d+01
|
|
ros_A(2) = 0.1867943637803922d+01
|
|
ros_A(3) = 0.2344449711399156d+00
|
|
ros_A(4) = ros_A(2)
|
|
ros_A(5) = ros_A(3)
|
|
ros_A(6) = 0.0D0
|
|
|
|
ros_C(1) =-0.7137615036412310d+01
|
|
ros_C(2) = 0.2580708087951457d+01
|
|
ros_C(3) = 0.6515950076447975d+00
|
|
ros_C(4) =-0.2137148994382534d+01
|
|
ros_C(5) =-0.3214669691237626d+00
|
|
ros_C(6) =-0.6949742501781779d+00
|
|
!~~~> Does the stage i require a new function evaluation (ros_NewF(i)=TRUE)
|
|
! or does it re-use the function evaluation from stage i-1 (ros_NewF(i)=FALSE)
|
|
ros_NewF(1) = .TRUE.
|
|
ros_NewF(2) = .TRUE.
|
|
ros_NewF(3) = .TRUE.
|
|
ros_NewF(4) = .FALSE.
|
|
!~~~> M_i = Coefficients for new step solution
|
|
ros_M(1) = 0.2255570073418735d+01
|
|
ros_M(2) = 0.2870493262186792d+00
|
|
ros_M(3) = 0.4353179431840180d+00
|
|
ros_M(4) = 0.1093502252409163d+01
|
|
!~~~> E_i = Coefficients for error estimator
|
|
ros_E(1) =-0.2815431932141155d+00
|
|
ros_E(2) =-0.7276199124938920d-01
|
|
ros_E(3) =-0.1082196201495311d+00
|
|
ros_E(4) =-0.1093502252409163d+01
|
|
!~~~> ros_ELO = estimator of local order - the minimum between the
|
|
! main and the embedded scheme orders plus 1
|
|
ros_ELO = 4.0d0
|
|
!~~~> Y_stage_i ~ Y( T + H*Alpha_i )
|
|
ros_Alpha(1) = 0.D0
|
|
ros_Alpha(2) = 0.1145640000000000d+01
|
|
ros_Alpha(3) = 0.6552168638155900d+00
|
|
ros_Alpha(4) = ros_Alpha(3)
|
|
!~~~> Gamma_i = \sum_j gamma_{i,j}
|
|
ros_Gamma(1) = 0.5728200000000000d+00
|
|
ros_Gamma(2) =-0.1769193891319233d+01
|
|
ros_Gamma(3) = 0.7592633437920482d+00
|
|
ros_Gamma(4) =-0.1049021087100450d+00
|
|
|
|
END SUBROUTINE Ros4
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE Rodas3
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! --- A STIFFLY-STABLE METHOD, 4 stages, order 3
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
IMPLICIT NONE
|
|
|
|
rosMethod = RD3
|
|
!~~~> Name of the method
|
|
ros_Name = 'RODAS-3'
|
|
!~~~> Number of stages
|
|
ros_S = 4
|
|
|
|
!~~~> The coefficient matrices A and C are strictly lower triangular.
|
|
! The lower triangular (subdiagonal) elements are stored in row-wise order:
|
|
! A(2,1) = ros_A(1), A(3,1)=ros_A(2), A(3,2)=ros_A(3), etc.
|
|
! The general mapping formula is:
|
|
! A(i,j) = ros_A( (i-1)*(i-2)/2 + j )
|
|
! C(i,j) = ros_C( (i-1)*(i-2)/2 + j )
|
|
|
|
ros_A(1) = 0.0d+00
|
|
ros_A(2) = 2.0d+00
|
|
ros_A(3) = 0.0d+00
|
|
ros_A(4) = 2.0d+00
|
|
ros_A(5) = 0.0d+00
|
|
ros_A(6) = 1.0d+00
|
|
|
|
ros_C(1) = 4.0d+00
|
|
ros_C(2) = 1.0d+00
|
|
ros_C(3) =-1.0d+00
|
|
ros_C(4) = 1.0d+00
|
|
ros_C(5) =-1.0d+00
|
|
ros_C(6) =-(8.0d+00/3.0d+00)
|
|
|
|
!~~~> Does the stage i require a new function evaluation (ros_NewF(i)=TRUE)
|
|
! or does it re-use the function evaluation from stage i-1 (ros_NewF(i)=FALSE)
|
|
ros_NewF(1) = .TRUE.
|
|
ros_NewF(2) = .FALSE.
|
|
ros_NewF(3) = .TRUE.
|
|
ros_NewF(4) = .TRUE.
|
|
!~~~> M_i = Coefficients for new step solution
|
|
ros_M(1) = 2.0d+00
|
|
ros_M(2) = 0.0d+00
|
|
ros_M(3) = 1.0d+00
|
|
ros_M(4) = 1.0d+00
|
|
!~~~> E_i = Coefficients for error estimator
|
|
ros_E(1) = 0.0d+00
|
|
ros_E(2) = 0.0d+00
|
|
ros_E(3) = 0.0d+00
|
|
ros_E(4) = 1.0d+00
|
|
!~~~> ros_ELO = estimator of local order - the minimum between the
|
|
! main and the embedded scheme orders plus 1
|
|
ros_ELO = 3.0d+00
|
|
!~~~> Y_stage_i ~ Y( T + H*Alpha_i )
|
|
ros_Alpha(1) = 0.0d+00
|
|
ros_Alpha(2) = 0.0d+00
|
|
ros_Alpha(3) = 1.0d+00
|
|
ros_Alpha(4) = 1.0d+00
|
|
!~~~> Gamma_i = \sum_j gamma_{i,j}
|
|
ros_Gamma(1) = 0.5d+00
|
|
ros_Gamma(2) = 1.5d+00
|
|
ros_Gamma(3) = 0.0d+00
|
|
ros_Gamma(4) = 0.0d+00
|
|
|
|
END SUBROUTINE Rodas3
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE Rodas4
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! STIFFLY-STABLE ROSENBROCK METHOD OF ORDER 4, WITH 6 STAGES
|
|
!
|
|
! E. HAIRER AND G. WANNER, SOLVING ORDINARY DIFFERENTIAL
|
|
! EQUATIONS II. STIFF AND DIFFERENTIAL-ALGEBRAIC PROBLEMS.
|
|
! SPRINGER SERIES IN COMPUTATIONAL MATHEMATICS,
|
|
! SPRINGER-VERLAG (1996)
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
IMPLICIT NONE
|
|
|
|
rosMethod = RD4
|
|
!~~~> Name of the method
|
|
ros_Name = 'RODAS-4'
|
|
!~~~> Number of stages
|
|
ros_S = 6
|
|
|
|
!~~~> Y_stage_i ~ Y( T + H*Alpha_i )
|
|
ros_Alpha(1) = 0.000d0
|
|
ros_Alpha(2) = 0.386d0
|
|
ros_Alpha(3) = 0.210d0
|
|
ros_Alpha(4) = 0.630d0
|
|
ros_Alpha(5) = 1.000d0
|
|
ros_Alpha(6) = 1.000d0
|
|
|
|
!~~~> Gamma_i = \sum_j gamma_{i,j}
|
|
ros_Gamma(1) = 0.2500000000000000d+00
|
|
ros_Gamma(2) =-0.1043000000000000d+00
|
|
ros_Gamma(3) = 0.1035000000000000d+00
|
|
ros_Gamma(4) =-0.3620000000000023d-01
|
|
ros_Gamma(5) = 0.0d0
|
|
ros_Gamma(6) = 0.0d0
|
|
|
|
!~~~> The coefficient matrices A and C are strictly lower triangular.
|
|
! The lower triangular (subdiagonal) elements are stored in row-wise order:
|
|
! A(2,1) = ros_A(1), A(3,1)=ros_A(2), A(3,2)=ros_A(3), etc.
|
|
! The general mapping formula is: A(i,j) = ros_A( (i-1)*(i-2)/2 + j )
|
|
! C(i,j) = ros_C( (i-1)*(i-2)/2 + j )
|
|
|
|
ros_A(1) = 0.1544000000000000d+01
|
|
ros_A(2) = 0.9466785280815826d+00
|
|
ros_A(3) = 0.2557011698983284d+00
|
|
ros_A(4) = 0.3314825187068521d+01
|
|
ros_A(5) = 0.2896124015972201d+01
|
|
ros_A(6) = 0.9986419139977817d+00
|
|
ros_A(7) = 0.1221224509226641d+01
|
|
ros_A(8) = 0.6019134481288629d+01
|
|
ros_A(9) = 0.1253708332932087d+02
|
|
ros_A(10) =-0.6878860361058950d+00
|
|
ros_A(11) = ros_A(7)
|
|
ros_A(12) = ros_A(8)
|
|
ros_A(13) = ros_A(9)
|
|
ros_A(14) = ros_A(10)
|
|
ros_A(15) = 1.0d+00
|
|
|
|
ros_C(1) =-0.5668800000000000d+01
|
|
ros_C(2) =-0.2430093356833875d+01
|
|
ros_C(3) =-0.2063599157091915d+00
|
|
ros_C(4) =-0.1073529058151375d+00
|
|
ros_C(5) =-0.9594562251023355d+01
|
|
ros_C(6) =-0.2047028614809616d+02
|
|
ros_C(7) = 0.7496443313967647d+01
|
|
ros_C(8) =-0.1024680431464352d+02
|
|
ros_C(9) =-0.3399990352819905d+02
|
|
ros_C(10) = 0.1170890893206160d+02
|
|
ros_C(11) = 0.8083246795921522d+01
|
|
ros_C(12) =-0.7981132988064893d+01
|
|
ros_C(13) =-0.3152159432874371d+02
|
|
ros_C(14) = 0.1631930543123136d+02
|
|
ros_C(15) =-0.6058818238834054d+01
|
|
|
|
!~~~> M_i = Coefficients for new step solution
|
|
ros_M(1) = ros_A(7)
|
|
ros_M(2) = ros_A(8)
|
|
ros_M(3) = ros_A(9)
|
|
ros_M(4) = ros_A(10)
|
|
ros_M(5) = 1.0d+00
|
|
ros_M(6) = 1.0d+00
|
|
|
|
!~~~> E_i = Coefficients for error estimator
|
|
ros_E(1) = 0.0d+00
|
|
ros_E(2) = 0.0d+00
|
|
ros_E(3) = 0.0d+00
|
|
ros_E(4) = 0.0d+00
|
|
ros_E(5) = 0.0d+00
|
|
ros_E(6) = 1.0d+00
|
|
|
|
!~~~> Does the stage i require a new function evaluation (ros_NewF(i)=TRUE)
|
|
! or does it re-use the function evaluation from stage i-1 (ros_NewF(i)=FALSE)
|
|
ros_NewF(1) = .TRUE.
|
|
ros_NewF(2) = .TRUE.
|
|
ros_NewF(3) = .TRUE.
|
|
ros_NewF(4) = .TRUE.
|
|
ros_NewF(5) = .TRUE.
|
|
ros_NewF(6) = .TRUE.
|
|
|
|
!~~~> ros_ELO = estimator of local order - the minimum between the
|
|
! main and the embedded scheme orders plus 1
|
|
ros_ELO = 4.0d0
|
|
|
|
END SUBROUTINE Rodas4
|
|
|
|
|
|
END SUBROUTINE RosenbrockADJ ! and its internal procedures
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE FunTemplate( T, Y, Ydot )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! Template for the ODE function call.
|
|
! Updates the rate coefficients (and possibly the fixed species) at each call
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
!~~~> Input variables
|
|
REAL(kind=dp), INTENT(IN) :: T, Y(NVAR)
|
|
!~~~> Output variables
|
|
REAL(kind=dp), INTENT(OUT) :: Ydot(NVAR)
|
|
!~~~> Local variables
|
|
REAL(kind=dp) :: Told
|
|
|
|
!!$ Told = TIME
|
|
!!$ TIME = T
|
|
!!$ CALL Update_SUN()
|
|
!!$ CALL Update_RCONST()
|
|
CALL Fun( Y, FIX, RCONST, Ydot )
|
|
!!$ TIME = Told
|
|
|
|
END SUBROUTINE FunTemplate
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE JacTemplate( T, Y, Jcb )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! Template for the ODE Jacobian call.
|
|
! Updates the rate coefficients (and possibly the fixed species) at each call
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
!~~~> Input variables
|
|
REAL(kind=dp) :: T, Y(NVAR)
|
|
!~~~> Output variables
|
|
#ifdef FULL_ALGEBRA
|
|
REAL(kind=dp) :: JV(LU_NONZERO), Jcb(NVAR,NVAR)
|
|
#else
|
|
REAL(kind=dp) :: Jcb(LU_NONZERO)
|
|
#endif
|
|
!~~~> Local variables
|
|
REAL(kind=dp) :: Told
|
|
#ifdef FULL_ALGEBRA
|
|
INTEGER :: i, j
|
|
#endif
|
|
|
|
!!$ Told = TIME
|
|
!!$ TIME = T
|
|
!!$ CALL Update_SUN()
|
|
!!$ CALL Update_RCONST()
|
|
#ifdef FULL_ALGEBRA
|
|
CALL Jac_SP(Y, FIX, RCONST, JV)
|
|
DO j=1,NVAR
|
|
DO i=1,NVAR
|
|
Jcb(i,j) = 0.0_dp
|
|
END DO
|
|
END DO
|
|
DO i=1,LU_NONZERO
|
|
Jcb(LU_IROW(i),LU_ICOL(i)) = JV(i)
|
|
END DO
|
|
#else
|
|
CALL Jac_SP( Y, FIX, RCONST, Jcb )
|
|
#endif
|
|
!!$ TIME = Told
|
|
|
|
END SUBROUTINE JacTemplate
|
|
|
|
|
|
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
SUBROUTINE HessTemplate( T, Y, Hes )
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! Template for the ODE Hessian call.
|
|
! Updates the rate coefficients (and possibly the fixed species) at each call
|
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
!~~~> Input variables
|
|
REAL(kind=dp), INTENT(IN) :: T, Y(NVAR)
|
|
!~~~> Output variables
|
|
REAL(kind=dp), INTENT(OUT) :: Hes(NHESS)
|
|
!~~~> Local variables
|
|
REAL(kind=dp) :: Told
|
|
|
|
!!$ Told = TIME
|
|
!!$ TIME = T
|
|
!!$ CALL Update_SUN()
|
|
!!$ CALL Update_RCONST()
|
|
CALL Hessian( Y, FIX, RCONST, Hes )
|
|
!!$ TIME = Told
|
|
|
|
END SUBROUTINE HessTemplate
|
|
|
|
END MODULE gckpp_adj_Integrator
|
|
|
|
|
|
|
|
|
|
! End of INTEGRATE function
|
|
! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|