Files
GEOS-Chem-adjoint-v35-note/code/new/routines.f
2025-10-02 14:49:27 +08:00

3956 lines
128 KiB
Fortran
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

c
c L-BFGS-B is released under the New BSD License (aka Modified BSD License
c or 3-clause license)
c Please read attached file License.txt
c
c=========== L-BFGS-B (version 3.0. April 25, 2011 ===================
c
c This is a modified version of L-BFGS-B. Minor changes in the updated
c code appear preceded by a line comment as follows
c
c c-jlm-jn
c
c Major changes are described in the accompanying paper:
c
c Jorge Nocedal and Jose Luis Morales, Remark on "Algorithm 778:
c L-BFGS-B: Fortran Subroutines for Large-Scale Bound Constrained
c Optimization" (2011). To appear in ACM Transactions on
c Mathematical Software,
c
c The paper describes an improvement and a correction to Algorithm 778.
c It is shown that the performance of the algorithm can be improved
c significantly by making a relatively simple modication to the subspace
c minimization phase. The correction concerns an error caused by the use
c of routine dpmeps to estimate machine precision.
c
c The total work space **wa** required by the new version is
c
c 2*m*n + 11m*m + 5*n + 8*m
c
c the old version required
c
c 2*m*n + 12m*m + 4*n + 12*m
c
c
c J. Nocedal Department of Electrical Engineering and
c Computer Science.
c Northwestern University. Evanston, IL. USA
c
c
c J.L Morales Departamento de Matematicas,
c Instituto Tecnologico Autonomo de Mexico
c Mexico D.F. Mexico.
c
c March 2011
c
c=============================================================================
subroutine setulb(n, m, x, l, u, nbd, f, g, factr, pgtol, wa, iwa,
+ task, iprint, csave, lsave, isave, dsave)
character*60 task, csave
logical lsave(4)
integer n, m, iprint,
+ nbd(n), iwa(3*n), isave(44)
double precision f, factr, pgtol, x(n), l(n), u(n), g(n),
c
c-jlm-jn
+ wa(2*m*n + 5*n + 11*m*m + 8*m), dsave(29)
c ************
c
c Subroutine setulb
c
c This subroutine partitions the working arrays wa and iwa, and
c then uses the limited memory BFGS method to solve the bound
c constrained optimization problem by calling mainlb.
c (The direct method will be used in the subspace minimization.)
c
c n is an integer variable. problem
c On entry n is the dimension of the problem.
c On exit n is unchanged.
c
c m is an integer variable.
c On entry m is the maximum number of variable metric corrections
c used to define the limited memory matrix.
c On exit m is unchanged.
c
c x is a double precision array of dimension n. n
c On entry x is an approximation to the solution.
c On exit x is the current approximation.
c
c l is a double precision array of dimension n.
c On entry l is the lower bound on x.
c On exit l is unchanged.
c
c u is a double precision array of dimension n.
c On entry u is the upper bound on x.
c On exit u is unchanged.
c
c nbd is an integer array of dimension n.
c On entry nbd represents the type of bounds imposed on the
c variables, and must be specified as follows:
c nbd(i)=0 if x(i) is unbounded,
c 1 if x(i) has only a lower bound,
c 2 if x(i) has both lower and upper bounds, and
c 3 if x(i) has only an upper bound.
c On exit nbd is unchanged.
c
c f is a double precision variable.
c On first entry f is unspecified.
c On final exit f is the value of the function at x.
c
c g is a double precision array of dimension n.
c On first entry g is unspecified.
c On final exit g is the value of the gradient at x.
c
c factr is a double precision variable.
c On entry factr >= 0 is specified by the user. The iteration
c will stop when
c
c (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch
c
c where epsmch is the machine precision, which is automatically
c generated by the code. Typical values for factr: 1.d+12 for
c low accuracy; 1.d+7 for moderate accuracy; 1.d+1 for extremely
c high accuracy.
c On exit factr is unchanged.
c
c pgtol is a double precision variable.
c On entry pgtol >= 0 is specified by the user. The iteration
c will stop when
c
c max{|proj g_i | i = 1, ..., n} <= pgtol
c
c where pg_i is the ith component of the projected gradient.
c On exit pgtol is unchanged.
c
c wa is a double precision working array of length
c (2mmax + 5)nmax + 12mmax^2 + 12mmax.
c
c iwa is an integer working array of length 3nmax.
c
c task is a working string of characters of length 60 indicating
c the current job when entering and quitting this subroutine.
c
c iprint is an integer variable that must be set by the user.
c It controls the frequency and type of output generated:
c iprint<0 no output is generated;
c iprint=0 print only one line at the last iteration;
c 0<iprint<99 print also f and |proj g| every iprint iterations;
c iprint=99 print details of every iteration except n-vectors;
c iprint=100 print also the changes of active set and final x;
c iprint>100 print details of every iteration including x and g;
c When iprint > 0, the file iterate.dat will be created to
c summarize the iteration.
c
c csave is a working string of characters of length 60.
c
c lsave is a logical working array of dimension 4.
c On exit with 'task' = NEW_X, the following information is
c available:
c If lsave(1) = .true. then the initial X has been replaced by
c its projection in the feasible set;
c If lsave(2) = .true. then the problem is constrained;
c If lsave(3) = .true. then each variable has upper and lower
c bounds;
c
c isave is an integer working array of dimension 44.
c On exit with 'task' = NEW_X, the following information is
c available:
c isave(22) = the total number of intervals explored in the
c search of Cauchy points;
c isave(26) = the total number of skipped BFGS updates before
c the current iteration;
c isave(30) = the number of current iteration;
c isave(31) = the total number of BFGS updates prior the current
c iteration;
c isave(33) = the number of intervals explored in the search of
c Cauchy point in the current iteration;
c isave(34) = the total number of function and gradient
c evaluations;
c isave(36) = the number of function value or gradient
c evaluations in the current iteration;
c if isave(37) = 0 then the subspace argmin is within the box;
c if isave(37) = 1 then the subspace argmin is beyond the box;
c isave(38) = the number of free variables in the current
c iteration;
c isave(39) = the number of active constraints in the current
c iteration;
c n + 1 - isave(40) = the number of variables leaving the set of
c active constraints in the current iteration;
c isave(41) = the number of variables entering the set of active
c constraints in the current iteration.
c
c dsave is a double precision working array of dimension 29.
c On exit with 'task' = NEW_X, the following information is
c available:
c dsave(1) = current 'theta' in the BFGS matrix;
c dsave(2) = f(x) in the previous iteration;
c dsave(3) = factr*epsmch;
c dsave(4) = 2-norm of the line search direction vector;
c dsave(5) = the machine precision epsmch generated by the code;
c dsave(7) = the accumulated time spent on searching for
c Cauchy points;
c dsave(8) = the accumulated time spent on
c subspace minimization;
c dsave(9) = the accumulated time spent on line search;
c dsave(11) = the slope of the line search function at
c the current point of line search;
c dsave(12) = the maximum relative step length imposed in
c line search;
c dsave(13) = the infinity norm of the projected gradient;
c dsave(14) = the relative step length in the line search;
c dsave(15) = the slope of the line search function at
c the starting point of the line search;
c dsave(16) = the square of the 2-norm of the line search
c direction vector.
c
c Subprograms called:
c
c L-BFGS-B Library ... mainlb.
c
c
c References:
c
c [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
c memory algorithm for bound constrained optimization'',
c SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208.
c
c [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: a
c limited memory FORTRAN code for solving bound constrained
c optimization problems'', Tech. Report, NAM-11, EECS Department,
c Northwestern University, 1994.
c
c (Postscript files of these papers are available via anonymous
c ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.)
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
c-jlm-jn
integer lws,lr,lz,lt,ld,lxp,lwa,
+ lwy,lsy,lss,lwt,lwn,lsnd
if (task .eq. 'START') then
isave(1) = m*n
isave(2) = m**2
isave(3) = 4*m**2
isave(4) = 1 ! ws m*n
isave(5) = isave(4) + isave(1) ! wy m*n
isave(6) = isave(5) + isave(1) ! wsy m**2
isave(7) = isave(6) + isave(2) ! wss m**2
isave(8) = isave(7) + isave(2) ! wt m**2
isave(9) = isave(8) + isave(2) ! wn 4*m**2
isave(10) = isave(9) + isave(3) ! wsnd 4*m**2
isave(11) = isave(10) + isave(3) ! wz n
isave(12) = isave(11) + n ! wr n
isave(13) = isave(12) + n ! wd n
isave(14) = isave(13) + n ! wt n
isave(15) = isave(14) + n ! wxp n
isave(16) = isave(15) + n ! wa 8*m
endif
lws = isave(4)
lwy = isave(5)
lsy = isave(6)
lss = isave(7)
lwt = isave(8)
lwn = isave(9)
lsnd = isave(10)
lz = isave(11)
lr = isave(12)
ld = isave(13)
lt = isave(14)
lxp = isave(15)
lwa = isave(16)
call mainlb(n,m,x,l,u,nbd,f,g,factr,pgtol,
+ wa(lws),wa(lwy),wa(lsy),wa(lss), wa(lwt),
+ wa(lwn),wa(lsnd),wa(lz),wa(lr),wa(ld),wa(lt),wa(lxp),
+ wa(lwa),
+ iwa(1),iwa(n+1),iwa(2*n+1),task,iprint,
+ csave,lsave,isave(22),dsave)
return
end
c======================= The end of setulb =============================
subroutine mainlb(n, m, x, l, u, nbd, f, g, factr, pgtol, ws, wy,
+ sy, ss, wt, wn, snd, z, r, d, t, xp, wa,
+ index, iwhere, indx2, task,
+ iprint, csave, lsave, isave, dsave)
implicit none
character*60 task, csave
logical lsave(4)
integer n, m, iprint, nbd(n), index(n),
+ iwhere(n), indx2(n), isave(23)
double precision f, factr, pgtol,
+ x(n), l(n), u(n), g(n), z(n), r(n), d(n), t(n),
c-jlm-jn
+ xp(n),
+ wa(8*m),
+ ws(n, m), wy(n, m), sy(m, m), ss(m, m),
+ wt(m, m), wn(2*m, 2*m), snd(2*m, 2*m), dsave(29)
c ************
c
c Subroutine mainlb
c
c This subroutine solves bound constrained optimization problems by
c using the compact formula of the limited memory BFGS updates.
c
c n is an integer variable.
c On entry n is the number of variables.
c On exit n is unchanged.
c
c m is an integer variable.
c On entry m is the maximum number of variable metric
c corrections allowed in the limited memory matrix.
c On exit m is unchanged.
c
c x is a double precision array of dimension n.
c On entry x is an approximation to the solution.
c On exit x is the current approximation.
c
c l is a double precision array of dimension n.
c On entry l is the lower bound of x.
c On exit l is unchanged.
c
c u is a double precision array of dimension n.
c On entry u is the upper bound of x.
c On exit u is unchanged.
c
c nbd is an integer array of dimension n.
c On entry nbd represents the type of bounds imposed on the
c variables, and must be specified as follows:
c nbd(i)=0 if x(i) is unbounded,
c 1 if x(i) has only a lower bound,
c 2 if x(i) has both lower and upper bounds,
c 3 if x(i) has only an upper bound.
c On exit nbd is unchanged.
c
c f is a double precision variable.
c On first entry f is unspecified.
c On final exit f is the value of the function at x.
c
c g is a double precision array of dimension n.
c On first entry g is unspecified.
c On final exit g is the value of the gradient at x.
c
c factr is a double precision variable.
c On entry factr >= 0 is specified by the user. The iteration
c will stop when
c
c (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch
c
c where epsmch is the machine precision, which is automatically
c generated by the code.
c On exit factr is unchanged.
c
c pgtol is a double precision variable.
c On entry pgtol >= 0 is specified by the user. The iteration
c will stop when
c
c max{|proj g_i | i = 1, ..., n} <= pgtol
c
c where pg_i is the ith component of the projected gradient.
c On exit pgtol is unchanged.
c
c ws, wy, sy, and wt are double precision working arrays used to
c store the following information defining the limited memory
c BFGS matrix:
c ws, of dimension n x m, stores S, the matrix of s-vectors;
c wy, of dimension n x m, stores Y, the matrix of y-vectors;
c sy, of dimension m x m, stores S'Y;
c ss, of dimension m x m, stores S'S;
c yy, of dimension m x m, stores Y'Y;
c wt, of dimension m x m, stores the Cholesky factorization
c of (theta*S'S+LD^(-1)L'); see eq.
c (2.26) in [3].
c
c wn is a double precision working array of dimension 2m x 2m
c used to store the LEL^T factorization of the indefinite matrix
c K = [-D -Y'ZZ'Y/theta L_a'-R_z' ]
c [L_a -R_z theta*S'AA'S ]
c
c where E = [-I 0]
c [ 0 I]
c
c snd is a double precision working array of dimension 2m x 2m
c used to store the lower triangular part of
c N = [Y' ZZ'Y L_a'+R_z']
c [L_a +R_z S'AA'S ]
c
c z(n),r(n),d(n),t(n), xp(n),wa(8*m) are double precision working arrays.
c z is used at different times to store the Cauchy point and
c the Newton point.
c xp is used to safeguard the projected Newton direction
c
c sg(m),sgo(m),yg(m),ygo(m) are double precision working arrays.
c
c index is an integer working array of dimension n.
c In subroutine freev, index is used to store the free and fixed
c variables at the Generalized Cauchy Point (GCP).
c
c iwhere is an integer working array of dimension n used to record
c the status of the vector x for GCP computation.
c iwhere(i)=0 or -3 if x(i) is free and has bounds,
c 1 if x(i) is fixed at l(i), and l(i) .ne. u(i)
c 2 if x(i) is fixed at u(i), and u(i) .ne. l(i)
c 3 if x(i) is always fixed, i.e., u(i)=x(i)=l(i)
c -1 if x(i) is always free, i.e., no bounds on it.
c
c indx2 is an integer working array of dimension n.
c Within subroutine cauchy, indx2 corresponds to the array iorder.
c In subroutine freev, a list of variables entering and leaving
c the free set is stored in indx2, and it is passed on to
c subroutine formk with this information.
c
c task is a working string of characters of length 60 indicating
c the current job when entering and leaving this subroutine.
c
c iprint is an INTEGER variable that must be set by the user.
c It controls the frequency and type of output generated:
c iprint<0 no output is generated;
c iprint=0 print only one line at the last iteration;
c 0<iprint<99 print also f and |proj g| every iprint iterations;
c iprint=99 print details of every iteration except n-vectors;
c iprint=100 print also the changes of active set and final x;
c iprint>100 print details of every iteration including x and g;
c When iprint > 0, the file iterate.dat will be created to
c summarize the iteration.
c
c csave is a working string of characters of length 60.
c
c lsave is a logical working array of dimension 4.
c
c isave is an integer working array of dimension 23.
c
c dsave is a double precision working array of dimension 29.
c
c
c Subprograms called
c
c L-BFGS-B Library ... cauchy, subsm, lnsrlb, formk,
c
c errclb, prn1lb, prn2lb, prn3lb, active, projgr,
c
c freev, cmprlb, matupd, formt.
c
c Minpack2 Library ... timer
c
c Linpack Library ... dcopy, ddot.
c
c
c References:
c
c [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
c memory algorithm for bound constrained optimization'',
c SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208.
c
c [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: FORTRAN
c Subroutines for Large Scale Bound Constrained Optimization''
c Tech. Report, NAM-11, EECS Department, Northwestern University,
c 1994.
c
c [3] R. Byrd, J. Nocedal and R. Schnabel "Representations of
c Quasi-Newton Matrices and their use in Limited Memory Methods'',
c Mathematical Programming 63 (1994), no. 4, pp. 129-156.
c
c (Postscript files of these papers are available via anonymous
c ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.)
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
logical prjctd,cnstnd,boxed,updatd,wrk
character*3 word
integer i,k,nintol,itfile,iback,nskip,
+ head,col,iter,itail,iupdat,
+ nseg,nfgv,info,ifun,
+ iword,nfree,nact,ileave,nenter
double precision theta,fold,ddot,dr,rr,tol,
+ xstep,sbgnrm,ddum,dnorm,dtd,epsmch,
+ cpu1,cpu2,cachyt,sbtime,lnscht,time1,time2,
+ gd,gdold,stp,stpmx,time
double precision one,zero
parameter (one=1.0d0,zero=0.0d0)
if (task .eq. 'START') then ! 如果作业状态是开始
epsmch = epsilon(one)
call timer(time1)
c Initialize counters and scalars when task='START'.
c for the limited memory BFGS matrices:
col = 0
head = 1
theta = one
iupdat = 0
updatd = .false.
iback = 0
itail = 0
iword = 0
nact = 0
ileave = 0
nenter = 0
fold = zero
dnorm = zero
cpu1 = zero
gd = zero
stpmx = zero
sbgnrm = zero
stp = zero
gdold = zero
dtd = zero
c for operation counts:
iter = 0
nfgv = 0
nseg = 0
nintol = 0
nskip = 0
nfree = n
ifun = 0
c for stopping tolerance:
tol = factr*epsmch
c for measuring running time:
cachyt = 0
sbtime = 0
lnscht = 0
c 'word' records the status of subspace solutions.
word = '---'
c 'info' records the termination information.
info = 0
itfile = 8
if (iprint .ge. 1) then
c open a summary file 'iterate.dat'
open (8, file = 'iterate.dat', status = 'unknown')
endif
c Check the input arguments for errors.
call errclb(n,m,factr,l,u,nbd,task,info,k)
if (task(1:5) .eq. 'ERROR') then
call prn3lb(n,x,f,task,iprint,info,itfile,
+ iter,nfgv,nintol,nskip,nact,sbgnrm,
+ zero,nseg,word,iback,stp,xstep,k,
+ cachyt,sbtime,lnscht)
return
endif
call prn1lb(n,m,l,u,x,iprint,itfile,epsmch)
c Initialize iwhere & project x onto the feasible set.
call active(n,l,u,nbd,x,iwhere,iprint,prjctd,cnstnd,boxed)
c The end of the initialization.
else
c restore local variables.
prjctd = lsave(1)
cnstnd = lsave(2)
boxed = lsave(3)
updatd = lsave(4)
nintol = isave(1)
itfile = isave(3)
iback = isave(4)
nskip = isave(5)
head = isave(6)
col = isave(7)
itail = isave(8)
iter = isave(9)
iupdat = isave(10)
nseg = isave(12)
nfgv = isave(13)
info = isave(14)
ifun = isave(15)
iword = isave(16)
nfree = isave(17)
nact = isave(18)
ileave = isave(19)
nenter = isave(20)
theta = dsave(1)
fold = dsave(2)
tol = dsave(3)
dnorm = dsave(4)
epsmch = dsave(5)
cpu1 = dsave(6)
cachyt = dsave(7)
sbtime = dsave(8)
lnscht = dsave(9)
time1 = dsave(10)
gd = dsave(11)
stpmx = dsave(12)
sbgnrm = dsave(13)
stp = dsave(14)
gdold = dsave(15)
dtd = dsave(16)
c After returning from the driver go to the point where execution
c is to resume.
if (task(1:5) .eq. 'FG_LN') goto 666
if (task(1:5) .eq. 'NEW_X') goto 777
if (task(1:5) .eq. 'FG_ST') goto 111
if (task(1:4) .eq. 'STOP') then
if (task(7:9) .eq. 'CPU') then
c restore the previous iterate.
call dcopy(n,t,1,x,1)
call dcopy(n,r,1,g,1)
f = fold
endif
goto 999
endif
endif
c Compute f0 and g0.
task = 'FG_START' ! 如果作业状态不是开始,则设置为 FG_START让驱动器继续计算代价函数和梯度
c return to the driver to calculate f and g; reenter at 111.
goto 1000
111 continue
nfgv = 1
c Compute the infinity norm of the (-) projected gradient.
call projgr(n,l,u,nbd,x,g,sbgnrm)
if (iprint .ge. 1) then
write (6,1002) iter,f,sbgnrm
write (itfile,1003) iter,nfgv,sbgnrm,f
endif
if (sbgnrm .le. pgtol) then
c terminate the algorithm.
task = 'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'
goto 999
endif
c ----------------- the beginning of the loop --------------------------
222 continue
if (iprint .ge. 99) write (6,1001) iter + 1
iword = -1
c
if (.not. cnstnd .and. col .gt. 0) then
c skip the search for GCP.
call dcopy(n,x,1,z,1)
wrk = updatd
nseg = 0
goto 333
endif
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Compute the Generalized Cauchy Point (GCP).
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
call timer(cpu1)
call cauchy(n,x,l,u,nbd,g,indx2,iwhere,t,d,z,
+ m,wy,ws,sy,wt,theta,col,head,
+ wa(1),wa(2*m+1),wa(4*m+1),wa(6*m+1),nseg,
+ iprint, sbgnrm, info, epsmch)
if (info .ne. 0) then
c singular triangular system detected; refresh the lbfgs memory.
if(iprint .ge. 1) write (6, 1005)
info = 0
col = 0
head = 1
theta = one
iupdat = 0
updatd = .false.
call timer(cpu2)
cachyt = cachyt + cpu2 - cpu1
goto 222
endif
call timer(cpu2)
cachyt = cachyt + cpu2 - cpu1
nintol = nintol + nseg
c Count the entering and leaving variables for iter > 0;
c find the index set of free and active variables at the GCP.
call freev(n,nfree,index,nenter,ileave,indx2,
+ iwhere,wrk,updatd,cnstnd,iprint,iter)
nact = n - nfree
333 continue
c If there are no free variables or B=theta*I, then
c skip the subspace minimization.
if (nfree .eq. 0 .or. col .eq. 0) goto 555
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Subspace minimization.
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
call timer(cpu1)
c Form the LEL^T factorization of the indefinite
c matrix K = [-D -Y'ZZ'Y/theta L_a'-R_z' ]
c [L_a -R_z theta*S'AA'S ]
c where E = [-I 0]
c [ 0 I]
if (wrk) call formk(n,nfree,index,nenter,ileave,indx2,iupdat,
+ updatd,wn,snd,m,ws,wy,sy,theta,col,head,info)
if (info .ne. 0) then
c nonpositive definiteness in Cholesky factorization;
c refresh the lbfgs memory and restart the iteration.
if(iprint .ge. 1) write (6, 1006)
info = 0
col = 0
head = 1
theta = one
iupdat = 0
updatd = .false.
call timer(cpu2)
sbtime = sbtime + cpu2 - cpu1
goto 222
endif
c compute r=-Z'B(xcp-xk)-Z'g (using wa(2m+1)=W'(xcp-x)
c from 'cauchy').
call cmprlb(n,m,x,g,ws,wy,sy,wt,z,r,wa,index,
+ theta,col,head,nfree,cnstnd,info)
if (info .ne. 0) goto 444
c-jlm-jn call the direct method.
call subsm( n, m, nfree, index, l, u, nbd, z, r, xp, ws, wy,
+ theta, x, g, col, head, iword, wa, wn, iprint, info)
444 continue
if (info .ne. 0) then
c singular triangular system detected;
c refresh the lbfgs memory and restart the iteration.
if(iprint .ge. 1) write (6, 1005)
info = 0
col = 0
head = 1
theta = one
iupdat = 0
updatd = .false.
call timer(cpu2)
sbtime = sbtime + cpu2 - cpu1
goto 222
endif
call timer(cpu2)
sbtime = sbtime + cpu2 - cpu1
555 continue
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Line search and optimality tests.
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Generate the search direction d:=z-x.
do 40 i = 1, n
d(i) = z(i) - x(i)
40 continue
call timer(cpu1)
666 continue
call lnsrlb(n,l,u,nbd,x,f,fold,gd,gdold,g,d,r,t,z,stp,dnorm,
+ dtd,xstep,stpmx,iter,ifun,iback,nfgv,info,task,
+ boxed,cnstnd,csave,isave(22),dsave(17))
if (info .ne. 0 .or. iback .ge. 20) then
c restore the previous iterate.
call dcopy(n,t,1,x,1)
call dcopy(n,r,1,g,1)
f = fold
if (col .eq. 0) then
c abnormal termination.
if (info .eq. 0) then
info = -9
c restore the actual number of f and g evaluations etc.
nfgv = nfgv - 1
ifun = ifun - 1
iback = iback - 1
endif
task = 'ABNORMAL_TERMINATION_IN_LNSRCH'
iter = iter + 1
goto 999
else
c refresh the lbfgs memory and restart the iteration.
if(iprint .ge. 1) write (6, 1008)
if (info .eq. 0) nfgv = nfgv - 1
info = 0
col = 0
head = 1
theta = one
iupdat = 0
updatd = .false.
task = 'RESTART_FROM_LNSRCH'
call timer(cpu2)
lnscht = lnscht + cpu2 - cpu1
goto 222
endif
else if (task(1:5) .eq. 'FG_LN') then
c return to the driver for calculating f and g; reenter at 666.
goto 1000
else
c calculate and print out the quantities related to the new X.
call timer(cpu2)
lnscht = lnscht + cpu2 - cpu1
iter = iter + 1
c Compute the infinity norm of the projected (-)gradient.
call projgr(n,l,u,nbd,x,g,sbgnrm)
c Print iteration information.
call prn2lb(n,x,f,g,iprint,itfile,iter,nfgv,nact,
+ sbgnrm,nseg,word,iword,iback,stp,xstep)
goto 1000
endif
777 continue
c Test for termination.
if (sbgnrm .le. pgtol) then
c terminate the algorithm.
task = 'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'
goto 999
endif
ddum = max(abs(fold), abs(f), one)
if ((fold - f) .le. tol*ddum) then
c terminate the algorithm.
task = 'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH'
if (iback .ge. 10) info = -5
c i.e., to issue a warning if iback>10 in the line search.
goto 999
endif
c Compute d=newx-oldx, r=newg-oldg, rr=y'y and dr=y's.
do 42 i = 1, n
r(i) = g(i) - r(i)
42 continue
rr = ddot(n,r,1,r,1)
if (stp .eq. one) then
dr = gd - gdold
ddum = -gdold
else
dr = (gd - gdold)*stp
call dscal(n,stp,d,1)
ddum = -gdold*stp
endif
if (dr .le. epsmch*ddum) then
c skip the L-BFGS update.
nskip = nskip + 1
updatd = .false.
if (iprint .ge. 1) write (6,1004) dr, ddum
goto 888
endif
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Update the L-BFGS matrix.
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
updatd = .true.
iupdat = iupdat + 1
c Update matrices WS and WY and form the middle matrix in B.
call matupd(n,m,ws,wy,sy,ss,d,r,itail,
+ iupdat,col,head,theta,rr,dr,stp,dtd)
c Form the upper half of the pds T = theta*SS + L*D^(-1)*L';
c Store T in the upper triangular of the array wt;
c Cholesky factorize T to J*J' with
c J' stored in the upper triangular of wt.
call formt(m,wt,sy,ss,col,theta,info)
if (info .ne. 0) then
c nonpositive definiteness in Cholesky factorization;
c refresh the lbfgs memory and restart the iteration.
if(iprint .ge. 1) write (6, 1007)
info = 0
col = 0
head = 1
theta = one
iupdat = 0
updatd = .false.
goto 222
endif
c Now the inverse of the middle matrix in B is
c [ D^(1/2) O ] [ -D^(1/2) D^(-1/2)*L' ]
c [ -L*D^(-1/2) J ] [ 0 J' ]
888 continue
c -------------------- the end of the loop -----------------------------
goto 222
999 continue
call timer(time2)
time = time2 - time1
call prn3lb(n,x,f,task,iprint,info,itfile,
+ iter,nfgv,nintol,nskip,nact,sbgnrm,
+ time,nseg,word,iback,stp,xstep,k,
+ cachyt,sbtime,lnscht)
1000 continue
c Save local variables.
lsave(1) = prjctd
lsave(2) = cnstnd
lsave(3) = boxed
lsave(4) = updatd
isave(1) = nintol
isave(3) = itfile
isave(4) = iback
isave(5) = nskip
isave(6) = head
isave(7) = col
isave(8) = itail
isave(9) = iter
isave(10) = iupdat
isave(12) = nseg
isave(13) = nfgv
isave(14) = info
isave(15) = ifun
isave(16) = iword
isave(17) = nfree
isave(18) = nact
isave(19) = ileave
isave(20) = nenter
dsave(1) = theta
dsave(2) = fold
dsave(3) = tol
dsave(4) = dnorm
dsave(5) = epsmch
dsave(6) = cpu1
dsave(7) = cachyt
dsave(8) = sbtime
dsave(9) = lnscht
dsave(10) = time1
dsave(11) = gd
dsave(12) = stpmx
dsave(13) = sbgnrm
dsave(14) = stp
dsave(15) = gdold
dsave(16) = dtd
1001 format (//,'ITERATION ',i5)
1002 format
+ (/,'At iterate',i5,4x,'f= ',1p,d12.5,4x,'|proj g|= ',1p,d12.5)
1003 format (2(1x,i4),5x,'-',5x,'-',3x,'-',5x,'-',5x,'-',8x,'-',3x,
+ 1p,2(1x,d10.3))
1004 format (' ys=',1p,e10.3,' -gs=',1p,e10.3,' BFGS update SKIPPED')
1005 format (/,
+' Singular triangular system detected;',/,
+' refresh the lbfgs memory and restart the iteration.')
1006 format (/,
+' Nonpositive definiteness in Cholesky factorization in formk;',/,
+' refresh the lbfgs memory and restart the iteration.')
1007 format (/,
+' Nonpositive definiteness in Cholesky factorization in formt;',/,
+' refresh the lbfgs memory and restart the iteration.')
1008 format (/,
+' Bad direction in the line search;',/,
+' refresh the lbfgs memory and restart the iteration.')
return
end
c======================= The end of mainlb =============================
subroutine active(n, l, u, nbd, x, iwhere, iprint,
+ prjctd, cnstnd, boxed)
logical prjctd, cnstnd, boxed
integer n, iprint, nbd(n), iwhere(n)
double precision x(n), l(n), u(n)
c ************
c
c Subroutine active
c
c This subroutine initializes iwhere and projects the initial x to
c the feasible set if necessary.
c
c iwhere is an integer array of dimension n.
c On entry iwhere is unspecified.
c On exit iwhere(i)=-1 if x(i) has no bounds
c 3 if l(i)=u(i)
c 0 otherwise.
c In cauchy, iwhere is given finer gradations.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer nbdd,i
double precision zero
parameter (zero=0.0d0)
c Initialize nbdd, prjctd, cnstnd and boxed.
nbdd = 0
prjctd = .false.
cnstnd = .false.
boxed = .true.
c Project the initial x to the easible set if necessary.
do 10 i = 1, n
if (nbd(i) .gt. 0) then
if (nbd(i) .le. 2 .and. x(i) .le. l(i)) then
if (x(i) .lt. l(i)) then
prjctd = .true.
x(i) = l(i)
endif
nbdd = nbdd + 1
else if (nbd(i) .ge. 2 .and. x(i) .ge. u(i)) then
if (x(i) .gt. u(i)) then
prjctd = .true.
x(i) = u(i)
endif
nbdd = nbdd + 1
endif
endif
10 continue
c Initialize iwhere and assign values to cnstnd and boxed.
do 20 i = 1, n
if (nbd(i) .ne. 2) boxed = .false.
if (nbd(i) .eq. 0) then
c this variable is always free
iwhere(i) = -1
c otherwise set x(i)=mid(x(i), u(i), l(i)).
else
cnstnd = .true.
if (nbd(i) .eq. 2 .and. u(i) - l(i) .le. zero) then
c this variable is always fixed
iwhere(i) = 3
else
iwhere(i) = 0
endif
endif
20 continue
if (iprint .ge. 0) then
if (prjctd) write (6,*)
+ 'The initial X is infeasible. Restart with its projection.'
if (.not. cnstnd)
+ write (6,*) 'This problem is unconstrained.'
endif
if (iprint .gt. 0) write (6,1001) nbdd
1001 format (/,'At X0 ',i9,' variables are exactly at the bounds')
return
end
c======================= The end of active =============================
subroutine bmv(m, sy, wt, col, v, p, info)
integer m, col, info
double precision sy(m, m), wt(m, m), v(2*col), p(2*col)
c ************
c
c Subroutine bmv
c
c This subroutine computes the product of the 2m x 2m middle matrix
c in the compact L-BFGS formula of B and a 2m vector v;
c it returns the product in p.
c
c m is an integer variable.
c On entry m is the maximum number of variable metric corrections
c used to define the limited memory matrix.
c On exit m is unchanged.
c
c sy is a double precision array of dimension m x m.
c On entry sy specifies the matrix S'Y.
c On exit sy is unchanged.
c
c wt is a double precision array of dimension m x m.
c On entry wt specifies the upper triangular matrix J' which is
c the Cholesky factor of (thetaS'S+LD^(-1)L').
c On exit wt is unchanged.
c
c col is an integer variable.
c On entry col specifies the number of s-vectors (or y-vectors)
c stored in the compact L-BFGS formula.
c On exit col is unchanged.
c
c v is a double precision array of dimension 2col.
c On entry v specifies vector v.
c On exit v is unchanged.
c
c p is a double precision array of dimension 2col.
c On entry p is unspecified.
c On exit p is the product Mv.
c
c info is an integer variable.
c On entry info is unspecified.
c On exit info = 0 for normal return,
c = nonzero for abnormal return when the system
c to be solved by dtrsl is singular.
c
c Subprograms called:
c
c Linpack ... dtrsl.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer i,k,i2
double precision sum
if (col .eq. 0) return
c PART I: solve [ D^(1/2) O ] [ p1 ] = [ v1 ]
c [ -L*D^(-1/2) J ] [ p2 ] [ v2 ].
c solve Jp2=v2+LD^(-1)v1.
p(col + 1) = v(col + 1)
do 20 i = 2, col
i2 = col + i
sum = 0.0d0
do 10 k = 1, i - 1
sum = sum + sy(i,k)*v(k)/sy(k,k)
10 continue
p(i2) = v(i2) + sum
20 continue
c Solve the triangular system
call dtrsl(wt,m,col,p(col+1),11,info)
if (info .ne. 0) return
c solve D^(1/2)p1=v1.
do 30 i = 1, col
p(i) = v(i)/sqrt(sy(i,i))
30 continue
c PART II: solve [ -D^(1/2) D^(-1/2)*L' ] [ p1 ] = [ p1 ]
c [ 0 J' ] [ p2 ] [ p2 ].
c solve J^Tp2=p2.
call dtrsl(wt,m,col,p(col+1),01,info)
if (info .ne. 0) return
c compute p1=-D^(-1/2)(p1-D^(-1/2)L'p2)
c =-D^(-1/2)p1+D^(-1)L'p2.
do 40 i = 1, col
p(i) = -p(i)/sqrt(sy(i,i))
40 continue
do 60 i = 1, col
sum = 0.d0
do 50 k = i + 1, col
sum = sum + sy(k,i)*p(col+k)/sy(i,i)
50 continue
p(i) = p(i) + sum
60 continue
return
end
c======================== The end of bmv ===============================
subroutine cauchy(n, x, l, u, nbd, g, iorder, iwhere, t, d, xcp,
+ m, wy, ws, sy, wt, theta, col, head, p, c, wbp,
+ v, nseg, iprint, sbgnrm, info, epsmch)
implicit none
integer n, m, head, col, nseg, iprint, info,
+ nbd(n), iorder(n), iwhere(n)
double precision theta, epsmch,
+ x(n), l(n), u(n), g(n), t(n), d(n), xcp(n),
+ wy(n, col), ws(n, col), sy(m, m),
+ wt(m, m), p(2*m), c(2*m), wbp(2*m), v(2*m)
c ************
c
c Subroutine cauchy
c
c For given x, l, u, g (with sbgnrm > 0), and a limited memory
c BFGS matrix B defined in terms of matrices WY, WS, WT, and
c scalars head, col, and theta, this subroutine computes the
c generalized Cauchy point (GCP), defined as the first local
c minimizer of the quadratic
c
c Q(x + s) = g's + 1/2 s'Bs
c
c along the projected gradient direction P(x-tg,l,u).
c The routine returns the GCP in xcp.
c
c n is an integer variable.
c On entry n is the dimension of the problem.
c On exit n is unchanged.
c
c x is a double precision array of dimension n.
c On entry x is the starting point for the GCP computation.
c On exit x is unchanged.
c
c l is a double precision array of dimension n.
c On entry l is the lower bound of x.
c On exit l is unchanged.
c
c u is a double precision array of dimension n.
c On entry u is the upper bound of x.
c On exit u is unchanged.
c
c nbd is an integer array of dimension n.
c On entry nbd represents the type of bounds imposed on the
c variables, and must be specified as follows:
c nbd(i)=0 if x(i) is unbounded,
c 1 if x(i) has only a lower bound,
c 2 if x(i) has both lower and upper bounds, and
c 3 if x(i) has only an upper bound.
c On exit nbd is unchanged.
c
c g is a double precision array of dimension n.
c On entry g is the gradient of f(x). g must be a nonzero vector.
c On exit g is unchanged.
c
c iorder is an integer working array of dimension n.
c iorder will be used to store the breakpoints in the piecewise
c linear path and free variables encountered. On exit,
c iorder(1),...,iorder(nleft) are indices of breakpoints
c which have not been encountered;
c iorder(nleft+1),...,iorder(nbreak) are indices of
c encountered breakpoints; and
c iorder(nfree),...,iorder(n) are indices of variables which
c have no bound constraits along the search direction.
c
c iwhere is an integer array of dimension n.
c On entry iwhere indicates only the permanently fixed (iwhere=3)
c or free (iwhere= -1) components of x.
c On exit iwhere records the status of the current x variables.
c iwhere(i)=-3 if x(i) is free and has bounds, but is not moved
c 0 if x(i) is free and has bounds, and is moved
c 1 if x(i) is fixed at l(i), and l(i) .ne. u(i)
c 2 if x(i) is fixed at u(i), and u(i) .ne. l(i)
c 3 if x(i) is always fixed, i.e., u(i)=x(i)=l(i)
c -1 if x(i) is always free, i.e., it has no bounds.
c
c t is a double precision working array of dimension n.
c t will be used to store the break points.
c
c d is a double precision array of dimension n used to store
c the Cauchy direction P(x-tg)-x.
c
c xcp is a double precision array of dimension n used to return the
c GCP on exit.
c
c m is an integer variable.
c On entry m is the maximum number of variable metric corrections
c used to define the limited memory matrix.
c On exit m is unchanged.
c
c ws, wy, sy, and wt are double precision arrays.
c On entry they store information that defines the
c limited memory BFGS matrix:
c ws(n,m) stores S, a set of s-vectors;
c wy(n,m) stores Y, a set of y-vectors;
c sy(m,m) stores S'Y;
c wt(m,m) stores the
c Cholesky factorization of (theta*S'S+LD^(-1)L').
c On exit these arrays are unchanged.
c
c theta is a double precision variable.
c On entry theta is the scaling factor specifying B_0 = theta I.
c On exit theta is unchanged.
c
c col is an integer variable.
c On entry col is the actual number of variable metric
c corrections stored so far.
c On exit col is unchanged.
c
c head is an integer variable.
c On entry head is the location of the first s-vector (or y-vector)
c in S (or Y).
c On exit col is unchanged.
c
c p is a double precision working array of dimension 2m.
c p will be used to store the vector p = W^(T)d.
c
c c is a double precision working array of dimension 2m.
c c will be used to store the vector c = W^(T)(xcp-x).
c
c wbp is a double precision working array of dimension 2m.
c wbp will be used to store the row of W corresponding
c to a breakpoint.
c
c v is a double precision working array of dimension 2m.
c
c nseg is an integer variable.
c On exit nseg records the number of quadratic segments explored
c in searching for the GCP.
c
c sg and yg are double precision arrays of dimension m.
c On entry sg and yg store S'g and Y'g correspondingly.
c On exit they are unchanged.
c
c iprint is an INTEGER variable that must be set by the user.
c It controls the frequency and type of output generated:
c iprint<0 no output is generated;
c iprint=0 print only one line at the last iteration;
c 0<iprint<99 print also f and |proj g| every iprint iterations;
c iprint=99 print details of every iteration except n-vectors;
c iprint=100 print also the changes of active set and final x;
c iprint>100 print details of every iteration including x and g;
c When iprint > 0, the file iterate.dat will be created to
c summarize the iteration.
c
c sbgnrm is a double precision variable.
c On entry sbgnrm is the norm of the projected gradient at x.
c On exit sbgnrm is unchanged.
c
c info is an integer variable.
c On entry info is 0.
c On exit info = 0 for normal return,
c = nonzero for abnormal return when the the system
c used in routine bmv is singular.
c
c Subprograms called:
c
c L-BFGS-B Library ... hpsolb, bmv.
c
c Linpack ... dscal dcopy, daxpy.
c
c
c References:
c
c [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
c memory algorithm for bound constrained optimization'',
c SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208.
c
c [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: FORTRAN
c Subroutines for Large Scale Bound Constrained Optimization''
c Tech. Report, NAM-11, EECS Department, Northwestern University,
c 1994.
c
c (Postscript files of these papers are available via anonymous
c ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.)
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
logical xlower,xupper,bnded
integer i,j,col2,nfree,nbreak,pointr,
+ ibp,nleft,ibkmin,iter
double precision f1,f2,dt,dtm,tsum,dibp,zibp,dibp2,bkmin,
+ tu,tl,wmc,wmp,wmw,ddot,tj,tj0,neggi,sbgnrm,
+ f2_org
double precision one,zero
parameter (one=1.0d0,zero=0.0d0)
c Check the status of the variables, reset iwhere(i) if necessary;
c compute the Cauchy direction d and the breakpoints t; initialize
c the derivative f1 and the vector p = W'd (for theta = 1).
if (sbgnrm .le. zero) then
if (iprint .ge. 0) write (6,*) 'Subgnorm = 0. GCP = X.'
call dcopy(n,x,1,xcp,1)
return
endif
bnded = .true.
nfree = n + 1
nbreak = 0
ibkmin = 0
bkmin = zero
col2 = 2*col
f1 = zero
if (iprint .ge. 99) write (6,3010)
c We set p to zero and build it up as we determine d.
do 20 i = 1, col2
p(i) = zero
20 continue
c In the following loop we determine for each variable its bound
c status and its breakpoint, and update p accordingly.
c Smallest breakpoint is identified.
do 50 i = 1, n
neggi = -g(i)
if (iwhere(i) .ne. 3 .and. iwhere(i) .ne. -1) then
c if x(i) is not a constant and has bounds,
c compute the difference between x(i) and its bounds.
if (nbd(i) .le. 2) tl = x(i) - l(i)
if (nbd(i) .ge. 2) tu = u(i) - x(i)
c If a variable is close enough to a bound
c we treat it as at bound.
xlower = nbd(i) .le. 2 .and. tl .le. zero
xupper = nbd(i) .ge. 2 .and. tu .le. zero
c reset iwhere(i).
iwhere(i) = 0
if (xlower) then
if (neggi .le. zero) iwhere(i) = 1
else if (xupper) then
if (neggi .ge. zero) iwhere(i) = 2
else
if (abs(neggi) .le. zero) iwhere(i) = -3
endif
endif
pointr = head
if (iwhere(i) .ne. 0 .and. iwhere(i) .ne. -1) then
d(i) = zero
else
d(i) = neggi
f1 = f1 - neggi*neggi
c calculate p := p - W'e_i* (g_i).
do 40 j = 1, col
p(j) = p(j) + wy(i,pointr)* neggi
p(col + j) = p(col + j) + ws(i,pointr)*neggi
pointr = mod(pointr,m) + 1
40 continue
if (nbd(i) .le. 2 .and. nbd(i) .ne. 0
+ .and. neggi .lt. zero) then
c x(i) + d(i) is bounded; compute t(i).
nbreak = nbreak + 1
iorder(nbreak) = i
t(nbreak) = tl/(-neggi)
if (nbreak .eq. 1 .or. t(nbreak) .lt. bkmin) then
bkmin = t(nbreak)
ibkmin = nbreak
endif
else if (nbd(i) .ge. 2 .and. neggi .gt. zero) then
c x(i) + d(i) is bounded; compute t(i).
nbreak = nbreak + 1
iorder(nbreak) = i
t(nbreak) = tu/neggi
if (nbreak .eq. 1 .or. t(nbreak) .lt. bkmin) then
bkmin = t(nbreak)
ibkmin = nbreak
endif
else
c x(i) + d(i) is not bounded.
nfree = nfree - 1
iorder(nfree) = i
if (abs(neggi) .gt. zero) bnded = .false.
endif
endif
50 continue
c The indices of the nonzero components of d are now stored
c in iorder(1),...,iorder(nbreak) and iorder(nfree),...,iorder(n).
c The smallest of the nbreak breakpoints is in t(ibkmin)=bkmin.
if (theta .ne. one) then
c complete the initialization of p for theta not= one.
call dscal(col,theta,p(col+1),1)
endif
c Initialize GCP xcp = x.
call dcopy(n,x,1,xcp,1)
if (nbreak .eq. 0 .and. nfree .eq. n + 1) then
c is a zero vector, return with the initial xcp as GCP.
if (iprint .gt. 100) write (6,1010) (xcp(i), i = 1, n)
return
endif
c Initialize c = W'(xcp - x) = 0.
do 60 j = 1, col2
c(j) = zero
60 continue
c Initialize derivative f2.
f2 = -theta*f1
f2_org = f2
if (col .gt. 0) then
call bmv(m,sy,wt,col,p,v,info)
if (info .ne. 0) return
f2 = f2 - ddot(col2,v,1,p,1)
endif
dtm = -f1/f2
tsum = zero
nseg = 1
if (iprint .ge. 99)
+ write (6,*) 'There are ',nbreak,' breakpoints '
c If there are no breakpoints, locate the GCP and return.
if (nbreak .eq. 0) goto 888
nleft = nbreak
iter = 1
tj = zero
c------------------- the beginning of the loop -------------------------
777 continue
c Find the next smallest breakpoint;
c compute dt = t(nleft) - t(nleft + 1).
tj0 = tj
if (iter .eq. 1) then
c Since we already have the smallest breakpoint we need not do
c heapsort yet. Often only one breakpoint is used and the
c cost of heapsort is avoided.
tj = bkmin
ibp = iorder(ibkmin)
else
if (iter .eq. 2) then
c Replace the already used smallest breakpoint with the
c breakpoint numbered nbreak > nlast, before heapsort call.
if (ibkmin .ne. nbreak) then
t(ibkmin) = t(nbreak)
iorder(ibkmin) = iorder(nbreak)
endif
c Update heap structure of breakpoints
c (if iter=2, initialize heap).
endif
call hpsolb(nleft,t,iorder,iter-2)
tj = t(nleft)
ibp = iorder(nleft)
endif
dt = tj - tj0
if (dt .ne. zero .and. iprint .ge. 100) then
write (6,4011) nseg,f1,f2
write (6,5010) dt
write (6,6010) dtm
endif
c If a minimizer is within this interval, locate the GCP and return.
if (dtm .lt. dt) goto 888
c Otherwise fix one variable and
c reset the corresponding component of d to zero.
tsum = tsum + dt
nleft = nleft - 1
iter = iter + 1
dibp = d(ibp)
d(ibp) = zero
if (dibp .gt. zero) then
zibp = u(ibp) - x(ibp)
xcp(ibp) = u(ibp)
iwhere(ibp) = 2
else
zibp = l(ibp) - x(ibp)
xcp(ibp) = l(ibp)
iwhere(ibp) = 1
endif
if (iprint .ge. 100) write (6,*) 'Variable ',ibp,' is fixed.'
if (nleft .eq. 0 .and. nbreak .eq. n) then
c all n variables are fixed,
c return with xcp as GCP.
dtm = dt
goto 999
endif
c Update the derivative information.
nseg = nseg + 1
dibp2 = dibp**2
c Update f1 and f2.
c temporarily set f1 and f2 for col=0.
f1 = f1 + dt*f2 + dibp2 - theta*dibp*zibp
f2 = f2 - theta*dibp2
if (col .gt. 0) then
c update c = c + dt*p.
call daxpy(col2,dt,p,1,c,1)
c choose wbp,
c the row of W corresponding to the breakpoint encountered.
pointr = head
do 70 j = 1,col
wbp(j) = wy(ibp,pointr)
wbp(col + j) = theta*ws(ibp,pointr)
pointr = mod(pointr,m) + 1
70 continue
c compute (wbp)Mc, (wbp)Mp, and (wbp)M(wbp)'.
call bmv(m,sy,wt,col,wbp,v,info)
if (info .ne. 0) return
wmc = ddot(col2,c,1,v,1)
wmp = ddot(col2,p,1,v,1)
wmw = ddot(col2,wbp,1,v,1)
c update p = p - dibp*wbp.
call daxpy(col2,-dibp,wbp,1,p,1)
c complete updating f1 and f2 while col > 0.
f1 = f1 + dibp*wmc
f2 = f2 + 2.0d0*dibp*wmp - dibp2*wmw
endif
f2 = max(epsmch*f2_org,f2)
if (nleft .gt. 0) then
dtm = -f1/f2
goto 777
c to repeat the loop for unsearched intervals.
else if(bnded) then
f1 = zero
f2 = zero
dtm = zero
else
dtm = -f1/f2
endif
c------------------- the end of the loop -------------------------------
888 continue
if (iprint .ge. 99) then
write (6,*)
write (6,*) 'GCP found in this segment'
write (6,4010) nseg,f1,f2
write (6,6010) dtm
endif
if (dtm .le. zero) dtm = zero
tsum = tsum + dtm
c Move free variables (i.e., the ones w/o breakpoints) and
c the variables whose breakpoints haven't been reached.
call daxpy(n,tsum,d,1,xcp,1)
999 continue
c Update c = c + dtm*p = W'(x^c - x)
c which will be used in computing r = Z'(B(x^c - x) + g).
if (col .gt. 0) call daxpy(col2,dtm,p,1,c,1)
if (iprint .gt. 100) write (6,1010) (xcp(i),i = 1,n)
if (iprint .ge. 99) write (6,2010)
1010 format ('Cauchy X = ',/,(4x,1p,6(1x,d11.4)))
2010 format (/,'---------------- exit CAUCHY----------------------',/)
3010 format (/,'---------------- CAUCHY entered-------------------')
4010 format ('Piece ',i3,' --f1, f2 at start point ',1p,2(1x,d11.4))
4011 format (/,'Piece ',i3,' --f1, f2 at start point ',
+ 1p,2(1x,d11.4))
5010 format ('Distance to the next break point = ',1p,d11.4)
6010 format ('Distance to the stationary point = ',1p,d11.4)
return
end
c====================== The end of cauchy ==============================
subroutine cmprlb(n, m, x, g, ws, wy, sy, wt, z, r, wa, index,
+ theta, col, head, nfree, cnstnd, info)
logical cnstnd
integer n, m, col, head, nfree, info, index(n)
double precision theta,
+ x(n), g(n), z(n), r(n), wa(4*m),
+ ws(n, m), wy(n, m), sy(m, m), wt(m, m)
c ************
c
c Subroutine cmprlb
c
c This subroutine computes r=-Z'B(xcp-xk)-Z'g by using
c wa(2m+1)=W'(xcp-x) from subroutine cauchy.
c
c Subprograms called:
c
c L-BFGS-B Library ... bmv.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer i,j,k,pointr
double precision a1,a2
if (.not. cnstnd .and. col .gt. 0) then
do 26 i = 1, n
r(i) = -g(i)
26 continue
else
do 30 i = 1, nfree
k = index(i)
r(i) = -theta*(z(k) - x(k)) - g(k)
30 continue
call bmv(m,sy,wt,col,wa(2*m+1),wa(1),info)
if (info .ne. 0) then
info = -8
return
endif
pointr = head
do 34 j = 1, col
a1 = wa(j)
a2 = theta*wa(col + j)
do 32 i = 1, nfree
k = index(i)
r(i) = r(i) + wy(k,pointr)*a1 + ws(k,pointr)*a2
32 continue
pointr = mod(pointr,m) + 1
34 continue
endif
return
end
c======================= The end of cmprlb =============================
subroutine errclb(n, m, factr, l, u, nbd, task, info, k)
character*60 task
integer n, m, info, k, nbd(n)
double precision factr, l(n), u(n)
c ************
c
c Subroutine errclb
c
c This subroutine checks the validity of the input data.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer i
double precision one,zero
parameter (one=1.0d0,zero=0.0d0)
c Check the input arguments for errors.
if (n .le. 0) task = 'ERROR: N .LE. 0'
if (m .le. 0) task = 'ERROR: M .LE. 0'
if (factr .lt. zero) task = 'ERROR: FACTR .LT. 0'
c Check the validity of the arrays nbd(i), u(i), and l(i).
do 10 i = 1, n
if (nbd(i) .lt. 0 .or. nbd(i) .gt. 3) then
c return
task = 'ERROR: INVALID NBD'
info = -6
k = i
endif
if (nbd(i) .eq. 2) then
if (l(i) .gt. u(i)) then
c return
task = 'ERROR: NO FEASIBLE SOLUTION'
info = -7
k = i
endif
endif
10 continue
return
end
c======================= The end of errclb =============================
subroutine formk(n, nsub, ind, nenter, ileave, indx2, iupdat,
+ updatd, wn, wn1, m, ws, wy, sy, theta, col,
+ head, info)
integer n, nsub, m, col, head, nenter, ileave, iupdat,
+ info, ind(n), indx2(n)
double precision theta, wn(2*m, 2*m), wn1(2*m, 2*m),
+ ws(n, m), wy(n, m), sy(m, m)
logical updatd
c ************
c
c Subroutine formk
c
c This subroutine forms the LEL^T factorization of the indefinite
c
c matrix K = [-D -Y'ZZ'Y/theta L_a'-R_z' ]
c [L_a -R_z theta*S'AA'S ]
c where E = [-I 0]
c [ 0 I]
c The matrix K can be shown to be equal to the matrix M^[-1]N
c occurring in section 5.1 of [1], as well as to the matrix
c Mbar^[-1] Nbar in section 5.3.
c
c n is an integer variable.
c On entry n is the dimension of the problem.
c On exit n is unchanged.
c
c nsub is an integer variable
c On entry nsub is the number of subspace variables in free set.
c On exit nsub is not changed.
c
c ind is an integer array of dimension nsub.
c On entry ind specifies the indices of subspace variables.
c On exit ind is unchanged.
c
c nenter is an integer variable.
c On entry nenter is the number of variables entering the
c free set.
c On exit nenter is unchanged.
c
c ileave is an integer variable.
c On entry indx2(ileave),...,indx2(n) are the variables leaving
c the free set.
c On exit ileave is unchanged.
c
c indx2 is an integer array of dimension n.
c On entry indx2(1),...,indx2(nenter) are the variables entering
c the free set, while indx2(ileave),...,indx2(n) are the
c variables leaving the free set.
c On exit indx2 is unchanged.
c
c iupdat is an integer variable.
c On entry iupdat is the total number of BFGS updates made so far.
c On exit iupdat is unchanged.
c
c updatd is a logical variable.
c On entry 'updatd' is true if the L-BFGS matrix is updatd.
c On exit 'updatd' is unchanged.
c
c wn is a double precision array of dimension 2m x 2m.
c On entry wn is unspecified.
c On exit the upper triangle of wn stores the LEL^T factorization
c of the 2*col x 2*col indefinite matrix
c [-D -Y'ZZ'Y/theta L_a'-R_z' ]
c [L_a -R_z theta*S'AA'S ]
c
c wn1 is a double precision array of dimension 2m x 2m.
c On entry wn1 stores the lower triangular part of
c [Y' ZZ'Y L_a'+R_z']
c [L_a+R_z S'AA'S ]
c in the previous iteration.
c On exit wn1 stores the corresponding updated matrices.
c The purpose of wn1 is just to store these inner products
c so they can be easily updated and inserted into wn.
c
c m is an integer variable.
c On entry m is the maximum number of variable metric corrections
c used to define the limited memory matrix.
c On exit m is unchanged.
c
c ws, wy, sy, and wtyy are double precision arrays;
c theta is a double precision variable;
c col is an integer variable;
c head is an integer variable.
c On entry they store the information defining the
c limited memory BFGS matrix:
c ws(n,m) stores S, a set of s-vectors;
c wy(n,m) stores Y, a set of y-vectors;
c sy(m,m) stores S'Y;
c wtyy(m,m) stores the Cholesky factorization
c of (theta*S'S+LD^(-1)L')
c theta is the scaling factor specifying B_0 = theta I;
c col is the number of variable metric corrections stored;
c head is the location of the 1st s- (or y-) vector in S (or Y).
c On exit they are unchanged.
c
c info is an integer variable.
c On entry info is unspecified.
c On exit info = 0 for normal return;
c = -1 when the 1st Cholesky factorization failed;
c = -2 when the 2st Cholesky factorization failed.
c
c Subprograms called:
c
c Linpack ... dcopy, dpofa, dtrsl.
c
c
c References:
c [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
c memory algorithm for bound constrained optimization'',
c SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208.
c
c [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: a
c limited memory FORTRAN code for solving bound constrained
c optimization problems'', Tech. Report, NAM-11, EECS Department,
c Northwestern University, 1994.
c
c (Postscript files of these papers are available via anonymous
c ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.)
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer m2,ipntr,jpntr,iy,is,jy,js,is1,js1,k1,i,k,
+ col2,pbegin,pend,dbegin,dend,upcl
double precision ddot,temp1,temp2,temp3,temp4
double precision one,zero
parameter (one=1.0d0,zero=0.0d0)
c Form the lower triangular part of
c WN1 = [Y' ZZ'Y L_a'+R_z']
c [L_a+R_z S'AA'S ]
c where L_a is the strictly lower triangular part of S'AA'Y
c R_z is the upper triangular part of S'ZZ'Y.
if (updatd) then
if (iupdat .gt. m) then
c shift old part of WN1.
do 10 jy = 1, m - 1
js = m + jy
call dcopy(m-jy,wn1(jy+1,jy+1),1,wn1(jy,jy),1)
call dcopy(m-jy,wn1(js+1,js+1),1,wn1(js,js),1)
call dcopy(m-1,wn1(m+2,jy+1),1,wn1(m+1,jy),1)
10 continue
endif
c put new rows in blocks (1,1), (2,1) and (2,2).
pbegin = 1
pend = nsub
dbegin = nsub + 1
dend = n
iy = col
is = m + col
ipntr = head + col - 1
if (ipntr .gt. m) ipntr = ipntr - m
jpntr = head
do 20 jy = 1, col
js = m + jy
temp1 = zero
temp2 = zero
temp3 = zero
c compute element jy of row 'col' of Y'ZZ'Y
do 15 k = pbegin, pend
k1 = ind(k)
temp1 = temp1 + wy(k1,ipntr)*wy(k1,jpntr)
15 continue
c compute elements jy of row 'col' of L_a and S'AA'S
do 16 k = dbegin, dend
k1 = ind(k)
temp2 = temp2 + ws(k1,ipntr)*ws(k1,jpntr)
temp3 = temp3 + ws(k1,ipntr)*wy(k1,jpntr)
16 continue
wn1(iy,jy) = temp1
wn1(is,js) = temp2
wn1(is,jy) = temp3
jpntr = mod(jpntr,m) + 1
20 continue
c put new column in block (2,1).
jy = col
jpntr = head + col - 1
if (jpntr .gt. m) jpntr = jpntr - m
ipntr = head
do 30 i = 1, col
is = m + i
temp3 = zero
c compute element i of column 'col' of R_z
do 25 k = pbegin, pend
k1 = ind(k)
temp3 = temp3 + ws(k1,ipntr)*wy(k1,jpntr)
25 continue
ipntr = mod(ipntr,m) + 1
wn1(is,jy) = temp3
30 continue
upcl = col - 1
else
upcl = col
endif
c modify the old parts in blocks (1,1) and (2,2) due to changes
c in the set of free variables.
ipntr = head
do 45 iy = 1, upcl
is = m + iy
jpntr = head
do 40 jy = 1, iy
js = m + jy
temp1 = zero
temp2 = zero
temp3 = zero
temp4 = zero
do 35 k = 1, nenter
k1 = indx2(k)
temp1 = temp1 + wy(k1,ipntr)*wy(k1,jpntr)
temp2 = temp2 + ws(k1,ipntr)*ws(k1,jpntr)
35 continue
do 36 k = ileave, n
k1 = indx2(k)
temp3 = temp3 + wy(k1,ipntr)*wy(k1,jpntr)
temp4 = temp4 + ws(k1,ipntr)*ws(k1,jpntr)
36 continue
wn1(iy,jy) = wn1(iy,jy) + temp1 - temp3
wn1(is,js) = wn1(is,js) - temp2 + temp4
jpntr = mod(jpntr,m) + 1
40 continue
ipntr = mod(ipntr,m) + 1
45 continue
c modify the old parts in block (2,1).
ipntr = head
do 60 is = m + 1, m + upcl
jpntr = head
do 55 jy = 1, upcl
temp1 = zero
temp3 = zero
do 50 k = 1, nenter
k1 = indx2(k)
temp1 = temp1 + ws(k1,ipntr)*wy(k1,jpntr)
50 continue
do 51 k = ileave, n
k1 = indx2(k)
temp3 = temp3 + ws(k1,ipntr)*wy(k1,jpntr)
51 continue
if (is .le. jy + m) then
wn1(is,jy) = wn1(is,jy) + temp1 - temp3
else
wn1(is,jy) = wn1(is,jy) - temp1 + temp3
endif
jpntr = mod(jpntr,m) + 1
55 continue
ipntr = mod(ipntr,m) + 1
60 continue
c Form the upper triangle of WN = [D+Y' ZZ'Y/theta -L_a'+R_z' ]
c [-L_a +R_z S'AA'S*theta]
m2 = 2*m
do 70 iy = 1, col
is = col + iy
is1 = m + iy
do 65 jy = 1, iy
js = col + jy
js1 = m + jy
wn(jy,iy) = wn1(iy,jy)/theta
wn(js,is) = wn1(is1,js1)*theta
65 continue
do 66 jy = 1, iy - 1
wn(jy,is) = -wn1(is1,jy)
66 continue
do 67 jy = iy, col
wn(jy,is) = wn1(is1,jy)
67 continue
wn(iy,iy) = wn(iy,iy) + sy(iy,iy)
70 continue
c Form the upper triangle of WN= [ LL' L^-1(-L_a'+R_z')]
c [(-L_a +R_z)L'^-1 S'AA'S*theta ]
c first Cholesky factor (1,1) block of wn to get LL'
c with L' stored in the upper triangle of wn.
call dpofa(wn,m2,col,info)
if (info .ne. 0) then
info = -1
return
endif
c then form L^-1(-L_a'+R_z') in the (1,2) block.
col2 = 2*col
do 71 js = col+1 ,col2
call dtrsl(wn,m2,col,wn(1,js),11,info)
71 continue
c Form S'AA'S*theta + (L^-1(-L_a'+R_z'))'L^-1(-L_a'+R_z') in the
c upper triangle of (2,2) block of wn.
do 72 is = col+1, col2
do 74 js = is, col2
wn(is,js) = wn(is,js) + ddot(col,wn(1,is),1,wn(1,js),1)
74 continue
72 continue
c Cholesky factorization of (2,2) block of wn.
call dpofa(wn(col+1,col+1),m2,col,info)
if (info .ne. 0) then
info = -2
return
endif
return
end
c======================= The end of formk ==============================
subroutine formt(m, wt, sy, ss, col, theta, info)
integer m, col, info
double precision theta, wt(m, m), sy(m, m), ss(m, m)
c ************
c
c Subroutine formt
c
c This subroutine forms the upper half of the pos. def. and symm.
c T = theta*SS + L*D^(-1)*L', stores T in the upper triangle
c of the array wt, and performs the Cholesky factorization of T
c to produce J*J', with J' stored in the upper triangle of wt.
c
c Subprograms called:
c
c Linpack ... dpofa.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer i,j,k,k1
double precision ddum
double precision zero
parameter (zero=0.0d0)
c Form the upper half of T = theta*SS + L*D^(-1)*L',
c store T in the upper triangle of the array wt.
do 52 j = 1, col
wt(1,j) = theta*ss(1,j)
52 continue
do 55 i = 2, col
do 54 j = i, col
k1 = min(i,j) - 1
ddum = zero
do 53 k = 1, k1
ddum = ddum + sy(i,k)*sy(j,k)/sy(k,k)
53 continue
wt(i,j) = ddum + theta*ss(i,j)
54 continue
55 continue
c Cholesky factorize T to J*J' with
c J' stored in the upper triangle of wt.
call dpofa(wt,m,col,info)
if (info .ne. 0) then
info = -3
endif
return
end
c======================= The end of formt ==============================
subroutine freev(n, nfree, index, nenter, ileave, indx2,
+ iwhere, wrk, updatd, cnstnd, iprint, iter)
integer n, nfree, nenter, ileave, iprint, iter,
+ index(n), indx2(n), iwhere(n)
logical wrk, updatd, cnstnd
c ************
c
c Subroutine freev
c
c This subroutine counts the entering and leaving variables when
c iter > 0, and finds the index set of free and active variables
c at the GCP.
c
c cnstnd is a logical variable indicating whether bounds are present
c
c index is an integer array of dimension n
c for i=1,...,nfree, index(i) are the indices of free variables
c for i=nfree+1,...,n, index(i) are the indices of bound variables
c On entry after the first iteration, index gives
c the free variables at the previous iteration.
c On exit it gives the free variables based on the determination
c in cauchy using the array iwhere.
c
c indx2 is an integer array of dimension n
c On entry indx2 is unspecified.
c On exit with iter>0, indx2 indicates which variables
c have changed status since the previous iteration.
c For i= 1,...,nenter, indx2(i) have changed from bound to free.
c For i= ileave+1,...,n, indx2(i) have changed from free to bound.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer iact,i,k
nenter = 0
ileave = n + 1
if (iter .gt. 0 .and. cnstnd) then
c count the entering and leaving variables.
do 20 i = 1, nfree
k = index(i)
c write(6,*) ' k = index(i) ', k
c write(6,*) ' index = ', i
if (iwhere(k) .gt. 0) then
ileave = ileave - 1
indx2(ileave) = k
if (iprint .ge. 100) write (6,*)
+ 'Variable ',k,' leaves the set of free variables'
endif
20 continue
do 22 i = 1 + nfree, n
k = index(i)
if (iwhere(k) .le. 0) then
nenter = nenter + 1
indx2(nenter) = k
if (iprint .ge. 100) write (6,*)
+ 'Variable ',k,' enters the set of free variables'
endif
22 continue
if (iprint .ge. 99) write (6,*)
+ n+1-ileave,' variables leave; ',nenter,' variables enter'
endif
wrk = (ileave .lt. n+1) .or. (nenter .gt. 0) .or. updatd
c Find the index set of free and active variables at the GCP.
nfree = 0
iact = n + 1
do 24 i = 1, n
if (iwhere(i) .le. 0) then
nfree = nfree + 1
index(nfree) = i
else
iact = iact - 1
index(iact) = i
endif
24 continue
if (iprint .ge. 99) write (6,*)
+ nfree,' variables are free at GCP ',iter + 1
return
end
c======================= The end of freev ==============================
subroutine hpsolb(n, t, iorder, iheap)
integer iheap, n, iorder(n)
double precision t(n)
c ************
c
c Subroutine hpsolb
c
c This subroutine sorts out the least element of t, and puts the
c remaining elements of t in a heap.
c
c n is an integer variable.
c On entry n is the dimension of the arrays t and iorder.
c On exit n is unchanged.
c
c t is a double precision array of dimension n.
c On entry t stores the elements to be sorted,
c On exit t(n) stores the least elements of t, and t(1) to t(n-1)
c stores the remaining elements in the form of a heap.
c
c iorder is an integer array of dimension n.
c On entry iorder(i) is the index of t(i).
c On exit iorder(i) is still the index of t(i), but iorder may be
c permuted in accordance with t.
c
c iheap is an integer variable specifying the task.
c On entry iheap should be set as follows:
c iheap .eq. 0 if t(1) to t(n) is not in the form of a heap,
c iheap .ne. 0 if otherwise.
c On exit iheap is unchanged.
c
c
c References:
c Algorithm 232 of CACM (J. W. J. Williams): HEAPSORT.
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c ************
integer i,j,k,indxin,indxou
double precision ddum,out
if (iheap .eq. 0) then
c Rearrange the elements t(1) to t(n) to form a heap.
do 20 k = 2, n
ddum = t(k)
indxin = iorder(k)
c Add ddum to the heap.
i = k
10 continue
if (i.gt.1) then
j = i/2
if (ddum .lt. t(j)) then
t(i) = t(j)
iorder(i) = iorder(j)
i = j
goto 10
endif
endif
t(i) = ddum
iorder(i) = indxin
20 continue
endif
c Assign to 'out' the value of t(1), the least member of the heap,
c and rearrange the remaining members to form a heap as
c elements 1 to n-1 of t.
if (n .gt. 1) then
i = 1
out = t(1)
indxou = iorder(1)
ddum = t(n)
indxin = iorder(n)
c Restore the heap
30 continue
j = i+i
if (j .le. n-1) then
if (t(j+1) .lt. t(j)) j = j+1
if (t(j) .lt. ddum ) then
t(i) = t(j)
iorder(i) = iorder(j)
i = j
goto 30
endif
endif
t(i) = ddum
iorder(i) = indxin
c Put the least member in t(n).
t(n) = out
iorder(n) = indxou
endif
return
end
c====================== The end of hpsolb ==============================
subroutine lnsrlb(n, l, u, nbd, x, f, fold, gd, gdold, g, d, r, t,
+ z, stp, dnorm, dtd, xstep, stpmx, iter, ifun,
+ iback, nfgv, info, task, boxed, cnstnd, csave,
+ isave, dsave)
character*60 task, csave
logical boxed, cnstnd
integer n, iter, ifun, iback, nfgv, info,
+ nbd(n), isave(2)
double precision f, fold, gd, gdold, stp, dnorm, dtd, xstep,
+ stpmx, x(n), l(n), u(n), g(n), d(n), r(n), t(n),
+ z(n), dsave(13)
c **********
c
c Subroutine lnsrlb
c
c This subroutine calls subroutine dcsrch from the Minpack2 library
c to perform the line search. Subroutine dscrch is safeguarded so
c that all trial points lie within the feasible region.
c
c Subprograms called:
c
c Minpack2 Library ... dcsrch.
c
c Linpack ... dtrsl, ddot.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c **********
integer i
double precision ddot,a1,a2
double precision one,zero,big
parameter (one=1.0d0,zero=0.0d0,big=1.0d+10)
double precision ftol,gtol,xtol
parameter (ftol=1.0d-3,gtol=0.9d0,xtol=0.1d0)
if (task(1:5) .eq. 'FG_LN') goto 556
dtd = ddot(n,d,1,d,1)
dnorm = sqrt(dtd)
c Determine the maximum step length.
stpmx = big
if (cnstnd) then
if (iter .eq. 0) then
stpmx = one
else
do 43 i = 1, n
a1 = d(i)
if (nbd(i) .ne. 0) then
if (a1 .lt. zero .and. nbd(i) .le. 2) then
a2 = l(i) - x(i)
if (a2 .ge. zero) then
stpmx = zero
else if (a1*stpmx .lt. a2) then
stpmx = a2/a1
endif
else if (a1 .gt. zero .and. nbd(i) .ge. 2) then
a2 = u(i) - x(i)
if (a2 .le. zero) then
stpmx = zero
else if (a1*stpmx .gt. a2) then
stpmx = a2/a1
endif
endif
endif
43 continue
endif
endif
if (iter .eq. 0 .and. .not. boxed) then
stp = min(one/dnorm, stpmx)
else
stp = one
endif
call dcopy(n,x,1,t,1)
call dcopy(n,g,1,r,1)
fold = f
ifun = 0
iback = 0
csave = 'START'
556 continue
gd = ddot(n,g,1,d,1)
if (ifun .eq. 0) then
gdold=gd
if (gd .ge. zero) then
c the directional derivative >=0.
c Line search is impossible.
write(6,*)' ascent direction in projection gd = ', gd
info = -4
return
endif
endif
call dcsrch(f,gd,stp,ftol,gtol,xtol,zero,stpmx,csave,isave,dsave)
xstep = stp*dnorm
if (csave(1:4) .ne. 'CONV' .and. csave(1:4) .ne. 'WARN') then
task = 'FG_LNSRCH'
ifun = ifun + 1
nfgv = nfgv + 1
iback = ifun - 1
if (stp .eq. one) then
call dcopy(n,z,1,x,1)
else
do 41 i = 1, n
x(i) = stp*d(i) + t(i)
41 continue
endif
else
task = 'NEW_X'
endif
return
end
c======================= The end of lnsrlb =============================
subroutine matupd(n, m, ws, wy, sy, ss, d, r, itail,
+ iupdat, col, head, theta, rr, dr, stp, dtd)
integer n, m, itail, iupdat, col, head
double precision theta, rr, dr, stp, dtd, d(n), r(n),
+ ws(n, m), wy(n, m), sy(m, m), ss(m, m)
c ************
c
c Subroutine matupd
c
c This subroutine updates matrices WS and WY, and forms the
c middle matrix in B.
c
c Subprograms called:
c
c Linpack ... dcopy, ddot.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer j,pointr
double precision ddot
double precision one
parameter (one=1.0d0)
c Set pointers for matrices WS and WY.
if (iupdat .le. m) then
col = iupdat
itail = mod(head+iupdat-2,m) + 1
else
itail = mod(itail,m) + 1
head = mod(head,m) + 1
endif
c Update matrices WS and WY.
call dcopy(n,d,1,ws(1,itail),1)
call dcopy(n,r,1,wy(1,itail),1)
c Set theta=yy/ys.
theta = rr/dr
c Form the middle matrix in B.
c update the upper triangle of SS,
c and the lower triangle of SY:
if (iupdat .gt. m) then
c move old information
do 50 j = 1, col - 1
call dcopy(j,ss(2,j+1),1,ss(1,j),1)
call dcopy(col-j,sy(j+1,j+1),1,sy(j,j),1)
50 continue
endif
c add new information: the last row of SY
c and the last column of SS:
pointr = head
do 51 j = 1, col - 1
sy(col,j) = ddot(n,d,1,wy(1,pointr),1)
ss(j,col) = ddot(n,ws(1,pointr),1,d,1)
pointr = mod(pointr,m) + 1
51 continue
if (stp .eq. one) then
ss(col,col) = dtd
else
ss(col,col) = stp*stp*dtd
endif
sy(col,col) = dr
return
end
c======================= The end of matupd =============================
subroutine prn1lb(n, m, l, u, x, iprint, itfile, epsmch)
integer n, m, iprint, itfile
double precision epsmch, x(n), l(n), u(n)
c ************
c
c Subroutine prn1lb
c
c This subroutine prints the input data, initial point, upper and
c lower bounds of each variable, machine precision, as well as
c the headings of the output.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer i
if (iprint .ge. 0) then
write (6,7001) epsmch
write (6,*) 'N = ',n,' M = ',m
if (iprint .ge. 1) then
write (itfile,2001) epsmch
write (itfile,*)'N = ',n,' M = ',m
write (itfile,9001)
if (iprint .gt. 100) then
write (6,1004) 'L =',(l(i),i = 1,n)
write (6,1004) 'X0 =',(x(i),i = 1,n)
write (6,1004) 'U =',(u(i),i = 1,n)
endif
endif
endif
1004 format (/,a4, 1p, 6(1x,d11.4),/,(4x,1p,6(1x,d11.4)))
2001 format ('RUNNING THE L-BFGS-B CODE',/,/,
+ 'it = iteration number',/,
+ 'nf = number of function evaluations',/,
+ 'nseg = number of segments explored during the Cauchy search',/,
+ 'nact = number of active bounds at the generalized Cauchy point'
+ ,/,
+ 'sub = manner in which the subspace minimization terminated:'
+ ,/,' con = converged, bnd = a bound was reached',/,
+ 'itls = number of iterations performed in the line search',/,
+ 'stepl = step length used',/,
+ 'tstep = norm of the displacement (total step)',/,
+ 'projg = norm of the projected gradient',/,
+ 'f = function value',/,/,
+ ' * * *',/,/,
+ 'Machine precision =',1p,d10.3)
7001 format ('RUNNING THE L-BFGS-B CODE',/,/,
+ ' * * *',/,/,
+ 'Machine precision =',1p,d10.3)
9001 format (/,3x,'it',3x,'nf',2x,'nseg',2x,'nact',2x,'sub',2x,'itls',
+ 2x,'stepl',4x,'tstep',5x,'projg',8x,'f')
return
end
c======================= The end of prn1lb =============================
subroutine prn2lb(n, x, f, g, iprint, itfile, iter, nfgv, nact,
+ sbgnrm, nseg, word, iword, iback, stp, xstep)
!(ajt 8/9/13)
USE LOGICAL_ADJ_MOD, ONLY: LATF
character*3 word
integer n, iprint, itfile, iter, nfgv, nact, nseg,
+ iword, iback
double precision f, sbgnrm, stp, xstep, x(n), g(n)
c ************
c
c Subroutine prn2lb
c
c This subroutine prints out new information after a successful
c line search.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer i,imod
! (ajt, 8/9/13)
LATF = .TRUE.
c 'word' records the status of subspace solutions.
if (iword .eq. 0) then
c the subspace minimization converged.
word = 'con'
else if (iword .eq. 1) then
c the subspace minimization stopped at a bound.
word = 'bnd'
else if (iword .eq. 5) then
c the truncated Newton step has been used.
word = 'TNT'
else
word = '---'
endif
if (iprint .ge. 99) then
write (6,*) 'LINE SEARCH',iback,' times; norm of step = ',xstep
write (6,2001) iter,f,sbgnrm
if (iprint .gt. 100) then
write (6,1004) 'X =',(x(i), i = 1, n)
write (6,1004) 'G =',(g(i), i = 1, n)
endif
else if (iprint .gt. 0) then
imod = mod(iter,iprint)
if (imod .eq. 0) write (6,2001) iter,f,sbgnrm
endif
if (iprint .ge. 1) write (itfile,3001)
+ iter,nfgv,nseg,nact,word,iback,stp,xstep,sbgnrm,f
1004 format (/,a4, 1p, 6(1x,d11.4),/,(4x,1p,6(1x,d11.4)))
2001 format
+ (/,'At iterate',i5,4x,'f= ',1p,d12.5,4x,'|proj g|= ',1p,d12.5)
3001 format(2(1x,i4),2(1x,i5),2x,a3,1x,i4,1p,2(2x,d7.1),1p,2(1x,d10.3))
return
end
c======================= The end of prn2lb =============================
subroutine prn3lb(n, x, f, task, iprint, info, itfile,
+ iter, nfgv, nintol, nskip, nact, sbgnrm,
+ time, nseg, word, iback, stp, xstep, k,
+ cachyt, sbtime, lnscht)
character*60 task
character*3 word
integer n, iprint, info, itfile, iter, nfgv, nintol,
+ nskip, nact, nseg, iback, k
double precision f, sbgnrm, time, stp, xstep, cachyt, sbtime,
+ lnscht, x(n)
c ************
c
c Subroutine prn3lb
c
c This subroutine prints out information when either a built-in
c convergence test is satisfied or when an error message is
c generated.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer i
if (task(1:5) .eq. 'ERROR') goto 999
if (iprint .ge. 0) then
write (6,3003)
write (6,3004)
write(6,3005) n,iter,nfgv,nintol,nskip,nact,sbgnrm,f
if (iprint .ge. 100) then
write (6,1004) 'X =',(x(i),i = 1,n)
endif
if (iprint .ge. 1) write (6,*) ' F =',f
endif
999 continue
if (iprint .ge. 0) then
write (6,3009) task
if (info .ne. 0) then
if (info .eq. -1) write (6,9011)
if (info .eq. -2) write (6,9012)
if (info .eq. -3) write (6,9013)
if (info .eq. -4) write (6,9014)
if (info .eq. -5) write (6,9015)
if (info .eq. -6) write (6,*)' Input nbd(',k,') is invalid.'
if (info .eq. -7)
+ write (6,*)' l(',k,') > u(',k,'). No feasible solution.'
if (info .eq. -8) write (6,9018)
if (info .eq. -9) write (6,9019)
endif
if (iprint .ge. 1) write (6,3007) cachyt,sbtime,lnscht
write (6,3008) time
if (iprint .ge. 1) then
if (info .eq. -4 .or. info .eq. -9) then
write (itfile,3002)
+ iter,nfgv,nseg,nact,word,iback,stp,xstep
endif
write (itfile,3009) task
if (info .ne. 0) then
if (info .eq. -1) write (itfile,9011)
if (info .eq. -2) write (itfile,9012)
if (info .eq. -3) write (itfile,9013)
if (info .eq. -4) write (itfile,9014)
if (info .eq. -5) write (itfile,9015)
if (info .eq. -8) write (itfile,9018)
if (info .eq. -9) write (itfile,9019)
endif
write (itfile,3008) time
endif
endif
1004 format (/,a4, 1p, 6(1x,d11.4),/,(4x,1p,6(1x,d11.4)))
3002 format(2(1x,i4),2(1x,i5),2x,a3,1x,i4,1p,2(2x,d7.1),6x,'-',10x,'-')
3003 format (/,
+ ' * * *',/,/,
+ 'Tit = total number of iterations',/,
+ 'Tnf = total number of function evaluations',/,
+ 'Tnint = total number of segments explored during',
+ ' Cauchy searches',/,
+ 'Skip = number of BFGS updates skipped',/,
+ 'Nact = number of active bounds at final generalized',
+ ' Cauchy point',/,
+ 'Projg = norm of the final projected gradient',/,
+ 'F = final function value',/,/,
+ ' * * *')
3004 format (/,3x,'N',4x,'Tit',5x,'Tnf',2x,'Tnint',2x,
+ 'Skip',2x,'Nact',5x,'Projg',8x,'F')
3005 format (i5,2(1x,i6),(1x,i6),(2x,i4),(1x,i5),1p,2(2x,d10.3))
3007 format (/,' Cauchy time',1p,e10.3,' seconds.',/
+ ' Subspace minimization time',1p,e10.3,' seconds.',/
+ ' Line search time',1p,e10.3,' seconds.')
3008 format (/,' Total User time',1p,e10.3,' seconds.',/)
3009 format (/,a60)
9011 format (/,
+' Matrix in 1st Cholesky factorization in formk is not Pos. Def.')
9012 format (/,
+' Matrix in 2st Cholesky factorization in formk is not Pos. Def.')
9013 format (/,
+' Matrix in the Cholesky factorization in formt is not Pos. Def.')
9014 format (/,
+' Derivative >= 0, backtracking line search impossible.',/,
+' Previous x, f and g restored.',/,
+' Possible causes: 1 error in function or gradient evaluation;',/,
+' 2 rounding errors dominate computation.')
9015 format (/,
+' Warning: more than 10 function and gradient',/,
+' evaluations in the last line search. Termination',/,
+' may possibly be caused by a bad search direction.')
9018 format (/,' The triangular system is singular.')
9019 format (/,
+' Line search cannot locate an adequate point after 20 function',/
+,' and gradient evaluations. Previous x, f and g restored.',/,
+' Possible causes: 1 error in function or gradient evaluation;',/,
+' 2 rounding error dominate computation.')
return
end
c======================= The end of prn3lb =============================
subroutine projgr(n, l, u, nbd, x, g, sbgnrm)
integer n, nbd(n)
double precision sbgnrm, x(n), l(n), u(n), g(n)
c ************
c
c Subroutine projgr
c
c This subroutine computes the infinity norm of the projected
c gradient.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer i
double precision gi
double precision one,zero
parameter (one=1.0d0,zero=0.0d0)
sbgnrm = zero
do 15 i = 1, n
gi = g(i)
if (nbd(i) .ne. 0) then
if (gi .lt. zero) then
if (nbd(i) .ge. 2) gi = max((x(i)-u(i)),gi)
else
if (nbd(i) .le. 2) gi = min((x(i)-l(i)),gi)
endif
endif
sbgnrm = max(sbgnrm,abs(gi))
15 continue
return
end
c======================= The end of projgr =============================
subroutine subsm ( n, m, nsub, ind, l, u, nbd, x, d, xp, ws, wy,
+ theta, xx, gg,
+ col, head, iword, wv, wn, iprint, info )
implicit none
integer n, m, nsub, col, head, iword, iprint, info,
+ ind(nsub), nbd(n)
double precision theta,
+ l(n), u(n), x(n), d(n), xp(n), xx(n), gg(n),
+ ws(n, m), wy(n, m),
+ wv(2*m), wn(2*m, 2*m)
c **********************************************************************
c
c This routine contains the major changes in the updated version.
c The changes are described in the accompanying paper
c
c Jose Luis Morales, Jorge Nocedal
c "Remark On Algorithm 788: L-BFGS-B: Fortran Subroutines for Large-Scale
c Bound Constrained Optimization". Decemmber 27, 2010.
c
c J.L. Morales Departamento de Matematicas,
c Instituto Tecnologico Autonomo de Mexico
c Mexico D.F.
c
c J, Nocedal Department of Electrical Engineering and
c Computer Science.
c Northwestern University. Evanston, IL. USA
c
c January 17, 2011
c
c **********************************************************************
c
c
c Subroutine subsm
c
c Given xcp, l, u, r, an index set that specifies
c the active set at xcp, and an l-BFGS matrix B
c (in terms of WY, WS, SY, WT, head, col, and theta),
c this subroutine computes an approximate solution
c of the subspace problem
c
c (P) min Q(x) = r'(x-xcp) + 1/2 (x-xcp)' B (x-xcp)
c
c subject to l<=x<=u
c x_i=xcp_i for all i in A(xcp)
c
c along the subspace unconstrained Newton direction
c
c d = -(Z'BZ)^(-1) r.
c
c The formula for the Newton direction, given the L-BFGS matrix
c and the Sherman-Morrison formula, is
c
c d = (1/theta)r + (1/theta*2) Z'WK^(-1)W'Z r.
c
c where
c K = [-D -Y'ZZ'Y/theta L_a'-R_z' ]
c [L_a -R_z theta*S'AA'S ]
c
c Note that this procedure for computing d differs
c from that described in [1]. One can show that the matrix K is
c equal to the matrix M^[-1]N in that paper.
c
c n is an integer variable.
c On entry n is the dimension of the problem.
c On exit n is unchanged.
c
c m is an integer variable.
c On entry m is the maximum number of variable metric corrections
c used to define the limited memory matrix.
c On exit m is unchanged.
c
c nsub is an integer variable.
c On entry nsub is the number of free variables.
c On exit nsub is unchanged.
c
c ind is an integer array of dimension nsub.
c On entry ind specifies the coordinate indices of free variables.
c On exit ind is unchanged.
c
c l is a double precision array of dimension n.
c On entry l is the lower bound of x.
c On exit l is unchanged.
c
c u is a double precision array of dimension n.
c On entry u is the upper bound of x.
c On exit u is unchanged.
c
c nbd is a integer array of dimension n.
c On entry nbd represents the type of bounds imposed on the
c variables, and must be specified as follows:
c nbd(i)=0 if x(i) is unbounded,
c 1 if x(i) has only a lower bound,
c 2 if x(i) has both lower and upper bounds, and
c 3 if x(i) has only an upper bound.
c On exit nbd is unchanged.
c
c x is a double precision array of dimension n.
c On entry x specifies the Cauchy point xcp.
c On exit x(i) is the minimizer of Q over the subspace of
c free variables.
c
c d is a double precision array of dimension n.
c On entry d is the reduced gradient of Q at xcp.
c On exit d is the Newton direction of Q.
c
c xp is a double precision array of dimension n.
c used to safeguard the projected Newton direction
c
c xx is a double precision array of dimension n
c On entry it holds the current iterate
c On output it is unchanged
c gg is a double precision array of dimension n
c On entry it holds the gradient at the current iterate
c On output it is unchanged
c
c ws and wy are double precision arrays;
c theta is a double precision variable;
c col is an integer variable;
c head is an integer variable.
c On entry they store the information defining the
c limited memory BFGS matrix:
c ws(n,m) stores S, a set of s-vectors;
c wy(n,m) stores Y, a set of y-vectors;
c theta is the scaling factor specifying B_0 = theta I;
c col is the number of variable metric corrections stored;
c head is the location of the 1st s- (or y-) vector in S (or Y).
c On exit they are unchanged.
c
c iword is an integer variable.
c On entry iword is unspecified.
c On exit iword specifies the status of the subspace solution.
c iword = 0 if the solution is in the box,
c 1 if some bound is encountered.
c
c wv is a double precision working array of dimension 2m.
c
c wn is a double precision array of dimension 2m x 2m.
c On entry the upper triangle of wn stores the LEL^T factorization
c of the indefinite matrix
c
c K = [-D -Y'ZZ'Y/theta L_a'-R_z' ]
c [L_a -R_z theta*S'AA'S ]
c where E = [-I 0]
c [ 0 I]
c On exit wn is unchanged.
c
c iprint is an INTEGER variable that must be set by the user.
c It controls the frequency and type of output generated:
c iprint<0 no output is generated;
c iprint=0 print only one line at the last iteration;
c 0<iprint<99 print also f and |proj g| every iprint iterations;
c iprint=99 print details of every iteration except n-vectors;
c iprint=100 print also the changes of active set and final x;
c iprint>100 print details of every iteration including x and g;
c When iprint > 0, the file iterate.dat will be created to
c summarize the iteration.
c
c info is an integer variable.
c On entry info is unspecified.
c On exit info = 0 for normal return,
c = nonzero for abnormal return
c when the matrix K is ill-conditioned.
c
c Subprograms called:
c
c Linpack dtrsl.
c
c
c References:
c
c [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
c memory algorithm for bound constrained optimization'',
c SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208.
c
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer pointr,m2,col2,ibd,jy,js,i,j,k
double precision alpha, xk, dk, temp1, temp2
double precision one,zero
parameter (one=1.0d0,zero=0.0d0)
c
double precision dd_p
if (nsub .le. 0) return
if (iprint .ge. 99) write (6,1001)
c Compute wv = W'Zd.
pointr = head
do 20 i = 1, col
temp1 = zero
temp2 = zero
do 10 j = 1, nsub
k = ind(j)
temp1 = temp1 + wy(k,pointr)*d(j)
temp2 = temp2 + ws(k,pointr)*d(j)
10 continue
wv(i) = temp1
wv(col + i) = theta*temp2
pointr = mod(pointr,m) + 1
20 continue
c Compute wv:=K^(-1)wv.
m2 = 2*m
col2 = 2*col
call dtrsl(wn,m2,col2,wv,11,info)
if (info .ne. 0) return
do 25 i = 1, col
wv(i) = -wv(i)
25 continue
call dtrsl(wn,m2,col2,wv,01,info)
if (info .ne. 0) return
c Compute d = (1/theta)d + (1/theta**2)Z'W wv.
pointr = head
do 40 jy = 1, col
js = col + jy
do 30 i = 1, nsub
k = ind(i)
d(i) = d(i) + wy(k,pointr)*wv(jy)/theta
+ + ws(k,pointr)*wv(js)
30 continue
pointr = mod(pointr,m) + 1
40 continue
call dscal( nsub, one/theta, d, 1 )
c
c-----------------------------------------------------------------
c Let us try the projection, d is the Newton direction
iword = 0
call dcopy ( n, x, 1, xp, 1 )
c
do 50 i=1, nsub
k = ind(i)
dk = d(i)
xk = x(k)
if ( nbd(k) .ne. 0 ) then
c
if ( nbd(k).eq.1 ) then ! lower bounds only
x(k) = max( l(k), xk + dk )
if ( x(k).eq.l(k) ) iword = 1
else
c
if ( nbd(k).eq.2 ) then ! upper and lower bounds
xk = max( l(k), xk + dk )
x(k) = min( u(k), xk )
if ( x(k).eq.l(k) .or. x(k).eq.u(k) ) iword = 1
else
c
if ( nbd(k).eq.3 ) then ! upper bounds only
x(k) = min( u(k), xk + dk )
if ( x(k).eq.u(k) ) iword = 1
end if
end if
end if
c
else ! free variables
x(k) = xk + dk
end if
50 continue
c
if ( iword.eq.0 ) then
go to 911
end if
c
c check sign of the directional derivative
c
dd_p = zero
do 55 i=1, n
dd_p = dd_p + (x(i) - xx(i))*gg(i)
55 continue
if ( dd_p .gt.zero ) then
call dcopy( n, xp, 1, x, 1 )
write(6,*) ' Positive dir derivative in projection '
write(6,*) ' Using the backtracking step '
else
go to 911
endif
c
c-----------------------------------------------------------------
c
alpha = one
temp1 = alpha
ibd = 0
do 60 i = 1, nsub
k = ind(i)
dk = d(i)
if (nbd(k) .ne. 0) then
if (dk .lt. zero .and. nbd(k) .le. 2) then
temp2 = l(k) - x(k)
if (temp2 .ge. zero) then
temp1 = zero
else if (dk*alpha .lt. temp2) then
temp1 = temp2/dk
endif
else if (dk .gt. zero .and. nbd(k) .ge. 2) then
temp2 = u(k) - x(k)
if (temp2 .le. zero) then
temp1 = zero
else if (dk*alpha .gt. temp2) then
temp1 = temp2/dk
endif
endif
if (temp1 .lt. alpha) then
alpha = temp1
ibd = i
endif
endif
60 continue
if (alpha .lt. one) then
dk = d(ibd)
k = ind(ibd)
if (dk .gt. zero) then
x(k) = u(k)
d(ibd) = zero
else if (dk .lt. zero) then
x(k) = l(k)
d(ibd) = zero
endif
endif
do 70 i = 1, nsub
k = ind(i)
x(k) = x(k) + alpha*d(i)
70 continue
cccccc
911 continue
if (iprint .ge. 99) write (6,1004)
1001 format (/,'----------------SUBSM entered-----------------',/)
1004 format (/,'----------------exit SUBSM --------------------',/)
return
end
c====================== The end of subsm ===============================
subroutine dcsrch(f,g,stp,ftol,gtol,xtol,stpmin,stpmax,
+ task,isave,dsave)
character*(*) task
integer isave(2)
double precision f,g,stp,ftol,gtol,xtol,stpmin,stpmax
double precision dsave(13)
c **********
c
c Subroutine dcsrch
c
c This subroutine finds a step that satisfies a sufficient
c decrease condition and a curvature condition.
c
c Each call of the subroutine updates an interval with
c endpoints stx and sty. The interval is initially chosen
c so that it contains a minimizer of the modified function
c
c psi(stp) = f(stp) - f(0) - ftol*stp*f'(0).
c
c If psi(stp) <= 0 and f'(stp) >= 0 for some step, then the
c interval is chosen so that it contains a minimizer of f.
c
c The algorithm is designed to find a step that satisfies
c the sufficient decrease condition
c
c f(stp) <= f(0) + ftol*stp*f'(0),
c
c and the curvature condition
c
c abs(f'(stp)) <= gtol*abs(f'(0)).
c
c If ftol is less than gtol and if, for example, the function
c is bounded below, then there is always a step which satisfies
c both conditions.
c
c If no step can be found that satisfies both conditions, then
c the algorithm stops with a warning. In this case stp only
c satisfies the sufficient decrease condition.
c
c A typical invocation of dcsrch has the following outline:
c
c task = 'START'
c 10 continue
c call dcsrch( ... )
c if (task .eq. 'FG') then
c Evaluate the function and the gradient at stp
c goto 10
c end if
c
c NOTE: The user must no alter work arrays between calls.
c
c The subroutine statement is
c
c subroutine dcsrch(f,g,stp,ftol,gtol,xtol,stpmin,stpmax,
c task,isave,dsave)
c where
c
c f is a double precision variable.
c On initial entry f is the value of the function at 0.
c On subsequent entries f is the value of the
c function at stp.
c On exit f is the value of the function at stp.
c
c g is a double precision variable.
c On initial entry g is the derivative of the function at 0.
c On subsequent entries g is the derivative of the
c function at stp.
c On exit g is the derivative of the function at stp.
c
c stp is a double precision variable.
c On entry stp is the current estimate of a satisfactory
c step. On initial entry, a positive initial estimate
c must be provided.
c On exit stp is the current estimate of a satisfactory step
c if task = 'FG'. If task = 'CONV' then stp satisfies
c the sufficient decrease and curvature condition.
c
c ftol is a double precision variable.
c On entry ftol specifies a nonnegative tolerance for the
c sufficient decrease condition.
c On exit ftol is unchanged.
c
c gtol is a double precision variable.
c On entry gtol specifies a nonnegative tolerance for the
c curvature condition.
c On exit gtol is unchanged.
c
c xtol is a double precision variable.
c On entry xtol specifies a nonnegative relative tolerance
c for an acceptable step. The subroutine exits with a
c warning if the relative difference between sty and stx
c is less than xtol.
c On exit xtol is unchanged.
c
c stpmin is a double precision variable.
c On entry stpmin is a nonnegative lower bound for the step.
c On exit stpmin is unchanged.
c
c stpmax is a double precision variable.
c On entry stpmax is a nonnegative upper bound for the step.
c On exit stpmax is unchanged.
c
c task is a character variable of length at least 60.
c On initial entry task must be set to 'START'.
c On exit task indicates the required action:
c
c If task(1:2) = 'FG' then evaluate the function and
c derivative at stp and call dcsrch again.
c
c If task(1:4) = 'CONV' then the search is successful.
c
c If task(1:4) = 'WARN' then the subroutine is not able
c to satisfy the convergence conditions. The exit value of
c stp contains the best point found during the search.
c
c If task(1:5) = 'ERROR' then there is an error in the
c input arguments.
c
c On exit with convergence, a warning or an error, the
c variable task contains additional information.
c
c isave is an integer work array of dimension 2.
c
c dsave is a double precision work array of dimension 13.
c
c Subprograms called
c
c MINPACK-2 ... dcstep
c
c MINPACK-1 Project. June 1983.
c Argonne National Laboratory.
c Jorge J. More' and David J. Thuente.
c
c MINPACK-2 Project. October 1993.
c Argonne National Laboratory and University of Minnesota.
c Brett M. Averick, Richard G. Carter, and Jorge J. More'.
c
c **********
double precision zero,p5,p66
parameter(zero=0.0d0,p5=0.5d0,p66=0.66d0)
double precision xtrapl,xtrapu
parameter(xtrapl=1.1d0,xtrapu=4.0d0)
logical brackt
integer stage
double precision finit,ftest,fm,fx,fxm,fy,fym,ginit,gtest,
+ gm,gx,gxm,gy,gym,stx,sty,stmin,stmax,width,width1
c Initialization block.
if (task(1:5) .eq. 'START') then
c Check the input arguments for errors.
if (stp .lt. stpmin) task = 'ERROR: STP .LT. STPMIN'
if (stp .gt. stpmax) task = 'ERROR: STP .GT. STPMAX'
if (g .ge. zero) task = 'ERROR: INITIAL G .GE. ZERO'
if (ftol .lt. zero) task = 'ERROR: FTOL .LT. ZERO'
if (gtol .lt. zero) task = 'ERROR: GTOL .LT. ZERO'
if (xtol .lt. zero) task = 'ERROR: XTOL .LT. ZERO'
if (stpmin .lt. zero) task = 'ERROR: STPMIN .LT. ZERO'
if (stpmax .lt. stpmin) task = 'ERROR: STPMAX .LT. STPMIN'
c Exit if there are errors on input.
if (task(1:5) .eq. 'ERROR') return
c Initialize local variables.
brackt = .false.
stage = 1
finit = f
ginit = g
gtest = ftol*ginit
width = stpmax - stpmin
width1 = width/p5
c The variables stx, fx, gx contain the values of the step,
c function, and derivative at the best step.
c The variables sty, fy, gy contain the value of the step,
c function, and derivative at sty.
c The variables stp, f, g contain the values of the step,
c function, and derivative at stp.
stx = zero
fx = finit
gx = ginit
sty = zero
fy = finit
gy = ginit
stmin = zero
stmax = stp + xtrapu*stp
task = 'FG'
goto 1000
else
c Restore local variables.
if (isave(1) .eq. 1) then
brackt = .true.
else
brackt = .false.
endif
stage = isave(2)
ginit = dsave(1)
gtest = dsave(2)
gx = dsave(3)
gy = dsave(4)
finit = dsave(5)
fx = dsave(6)
fy = dsave(7)
stx = dsave(8)
sty = dsave(9)
stmin = dsave(10)
stmax = dsave(11)
width = dsave(12)
width1 = dsave(13)
endif
c If psi(stp) <= 0 and f'(stp) >= 0 for some step, then the
c algorithm enters the second stage.
ftest = finit + stp*gtest
if (stage .eq. 1 .and. f .le. ftest .and. g .ge. zero)
+ stage = 2
c Test for warnings.
if (brackt .and. (stp .le. stmin .or. stp .ge. stmax))
+ task = 'WARNING: ROUNDING ERRORS PREVENT PROGRESS'
if (brackt .and. stmax - stmin .le. xtol*stmax)
+ task = 'WARNING: XTOL TEST SATISFIED'
if (stp .eq. stpmax .and. f .le. ftest .and. g .le. gtest)
+ task = 'WARNING: STP = STPMAX'
if (stp .eq. stpmin .and. (f .gt. ftest .or. g .ge. gtest))
+ task = 'WARNING: STP = STPMIN'
c Test for convergence.
if (f .le. ftest .and. abs(g) .le. gtol*(-ginit))
+ task = 'CONVERGENCE'
c Test for termination.
if (task(1:4) .eq. 'WARN' .or. task(1:4) .eq. 'CONV') goto 1000
c A modified function is used to predict the step during the
c first stage if a lower function value has been obtained but
c the decrease is not sufficient.
if (stage .eq. 1 .and. f .le. fx .and. f .gt. ftest) then
c Define the modified function and derivative values.
fm = f - stp*gtest
fxm = fx - stx*gtest
fym = fy - sty*gtest
gm = g - gtest
gxm = gx - gtest
gym = gy - gtest
c Call dcstep to update stx, sty, and to compute the new step.
call dcstep(stx,fxm,gxm,sty,fym,gym,stp,fm,gm,
+ brackt,stmin,stmax)
c Reset the function and derivative values for f.
fx = fxm + stx*gtest
fy = fym + sty*gtest
gx = gxm + gtest
gy = gym + gtest
else
c Call dcstep to update stx, sty, and to compute the new step.
call dcstep(stx,fx,gx,sty,fy,gy,stp,f,g,
+ brackt,stmin,stmax)
endif
c Decide if a bisection step is needed.
if (brackt) then
if (abs(sty-stx) .ge. p66*width1) stp = stx + p5*(sty - stx)
width1 = width
width = abs(sty-stx)
endif
c Set the minimum and maximum steps allowed for stp.
if (brackt) then
stmin = min(stx,sty)
stmax = max(stx,sty)
else
stmin = stp + xtrapl*(stp - stx)
stmax = stp + xtrapu*(stp - stx)
endif
c Force the step to be within the bounds stpmax and stpmin.
stp = max(stp,stpmin)
stp = min(stp,stpmax)
c If further progress is not possible, let stp be the best
c point obtained during the search.
if (brackt .and. (stp .le. stmin .or. stp .ge. stmax)
+ .or. (brackt .and. stmax-stmin .le. xtol*stmax)) stp = stx
c Obtain another function and derivative.
task = 'FG'
1000 continue
c Save local variables.
if (brackt) then
isave(1) = 1
else
isave(1) = 0
endif
isave(2) = stage
dsave(1) = ginit
dsave(2) = gtest
dsave(3) = gx
dsave(4) = gy
dsave(5) = finit
dsave(6) = fx
dsave(7) = fy
dsave(8) = stx
dsave(9) = sty
dsave(10) = stmin
dsave(11) = stmax
dsave(12) = width
dsave(13) = width1
return
end
c====================== The end of dcsrch ==============================
subroutine dcstep(stx,fx,dx,sty,fy,dy,stp,fp,dp,brackt,
+ stpmin,stpmax)
logical brackt
double precision stx,fx,dx,sty,fy,dy,stp,fp,dp,stpmin,stpmax
c **********
c
c Subroutine dcstep
c
c This subroutine computes a safeguarded step for a search
c procedure and updates an interval that contains a step that
c satisfies a sufficient decrease and a curvature condition.
c
c The parameter stx contains the step with the least function
c value. If brackt is set to .true. then a minimizer has
c been bracketed in an interval with endpoints stx and sty.
c The parameter stp contains the current step.
c The subroutine assumes that if brackt is set to .true. then
c
c min(stx,sty) < stp < max(stx,sty),
c
c and that the derivative at stx is negative in the direction
c of the step.
c
c The subroutine statement is
c
c subroutine dcstep(stx,fx,dx,sty,fy,dy,stp,fp,dp,brackt,
c stpmin,stpmax)
c
c where
c
c stx is a double precision variable.
c On entry stx is the best step obtained so far and is an
c endpoint of the interval that contains the minimizer.
c On exit stx is the updated best step.
c
c fx is a double precision variable.
c On entry fx is the function at stx.
c On exit fx is the function at stx.
c
c dx is a double precision variable.
c On entry dx is the derivative of the function at
c stx. The derivative must be negative in the direction of
c the step, that is, dx and stp - stx must have opposite
c signs.
c On exit dx is the derivative of the function at stx.
c
c sty is a double precision variable.
c On entry sty is the second endpoint of the interval that
c contains the minimizer.
c On exit sty is the updated endpoint of the interval that
c contains the minimizer.
c
c fy is a double precision variable.
c On entry fy is the function at sty.
c On exit fy is the function at sty.
c
c dy is a double precision variable.
c On entry dy is the derivative of the function at sty.
c On exit dy is the derivative of the function at the exit sty.
c
c stp is a double precision variable.
c On entry stp is the current step. If brackt is set to .true.
c then on input stp must be between stx and sty.
c On exit stp is a new trial step.
c
c fp is a double precision variable.
c On entry fp is the function at stp
c On exit fp is unchanged.
c
c dp is a double precision variable.
c On entry dp is the the derivative of the function at stp.
c On exit dp is unchanged.
c
c brackt is an logical variable.
c On entry brackt specifies if a minimizer has been bracketed.
c Initially brackt must be set to .false.
c On exit brackt specifies if a minimizer has been bracketed.
c When a minimizer is bracketed brackt is set to .true.
c
c stpmin is a double precision variable.
c On entry stpmin is a lower bound for the step.
c On exit stpmin is unchanged.
c
c stpmax is a double precision variable.
c On entry stpmax is an upper bound for the step.
c On exit stpmax is unchanged.
c
c MINPACK-1 Project. June 1983
c Argonne National Laboratory.
c Jorge J. More' and David J. Thuente.
c
c MINPACK-2 Project. October 1993.
c Argonne National Laboratory and University of Minnesota.
c Brett M. Averick and Jorge J. More'.
c
c **********
double precision zero,p66,two,three
parameter(zero=0.0d0,p66=0.66d0,two=2.0d0,three=3.0d0)
double precision gamma,p,q,r,s,sgnd,stpc,stpf,stpq,theta
sgnd = dp*(dx/abs(dx))
c First case: A higher function value. The minimum is bracketed.
c If the cubic step is closer to stx than the quadratic step, the
c cubic step is taken, otherwise the average of the cubic and
c quadratic steps is taken.
if (fp .gt. fx) then
theta = three*(fx - fp)/(stp - stx) + dx + dp
s = max(abs(theta),abs(dx),abs(dp))
gamma = s*sqrt((theta/s)**2 - (dx/s)*(dp/s))
if (stp .lt. stx) gamma = -gamma
p = (gamma - dx) + theta
q = ((gamma - dx) + gamma) + dp
r = p/q
stpc = stx + r*(stp - stx)
stpq = stx + ((dx/((fx - fp)/(stp - stx) + dx))/two)*
+ (stp - stx)
if (abs(stpc-stx) .lt. abs(stpq-stx)) then
stpf = stpc
else
stpf = stpc + (stpq - stpc)/two
endif
brackt = .true.
c Second case: A lower function value and derivatives of opposite
c sign. The minimum is bracketed. If the cubic step is farther from
c stp than the secant step, the cubic step is taken, otherwise the
c secant step is taken.
else if (sgnd .lt. zero) then
theta = three*(fx - fp)/(stp - stx) + dx + dp
s = max(abs(theta),abs(dx),abs(dp))
gamma = s*sqrt((theta/s)**2 - (dx/s)*(dp/s))
if (stp .gt. stx) gamma = -gamma
p = (gamma - dp) + theta
q = ((gamma - dp) + gamma) + dx
r = p/q
stpc = stp + r*(stx - stp)
stpq = stp + (dp/(dp - dx))*(stx - stp)
if (abs(stpc-stp) .gt. abs(stpq-stp)) then
stpf = stpc
else
stpf = stpq
endif
brackt = .true.
c Third case: A lower function value, derivatives of the same sign,
c and the magnitude of the derivative decreases.
else if (abs(dp) .lt. abs(dx)) then
c The cubic step is computed only if the cubic tends to infinity
c in the direction of the step or if the minimum of the cubic
c is beyond stp. Otherwise the cubic step is defined to be the
c secant step.
theta = three*(fx - fp)/(stp - stx) + dx + dp
s = max(abs(theta),abs(dx),abs(dp))
c The case gamma = 0 only arises if the cubic does not tend
c to infinity in the direction of the step.
gamma = s*sqrt(max(zero,(theta/s)**2-(dx/s)*(dp/s)))
if (stp .gt. stx) gamma = -gamma
p = (gamma - dp) + theta
q = (gamma + (dx - dp)) + gamma
r = p/q
if (r .lt. zero .and. gamma .ne. zero) then
stpc = stp + r*(stx - stp)
else if (stp .gt. stx) then
stpc = stpmax
else
stpc = stpmin
endif
stpq = stp + (dp/(dp - dx))*(stx - stp)
if (brackt) then
c A minimizer has been bracketed. If the cubic step is
c closer to stp than the secant step, the cubic step is
c taken, otherwise the secant step is taken.
if (abs(stpc-stp) .lt. abs(stpq-stp)) then
stpf = stpc
else
stpf = stpq
endif
if (stp .gt. stx) then
stpf = min(stp+p66*(sty-stp),stpf)
else
stpf = max(stp+p66*(sty-stp),stpf)
endif
else
c A minimizer has not been bracketed. If the cubic step is
c farther from stp than the secant step, the cubic step is
c taken, otherwise the secant step is taken.
if (abs(stpc-stp) .gt. abs(stpq-stp)) then
stpf = stpc
else
stpf = stpq
endif
stpf = min(stpmax,stpf)
stpf = max(stpmin,stpf)
endif
c Fourth case: A lower function value, derivatives of the same sign,
c and the magnitude of the derivative does not decrease. If the
c minimum is not bracketed, the step is either stpmin or stpmax,
c otherwise the cubic step is taken.
else
if (brackt) then
theta = three*(fp - fy)/(sty - stp) + dy + dp
s = max(abs(theta),abs(dy),abs(dp))
gamma = s*sqrt((theta/s)**2 - (dy/s)*(dp/s))
if (stp .gt. sty) gamma = -gamma
p = (gamma - dp) + theta
q = ((gamma - dp) + gamma) + dy
r = p/q
stpc = stp + r*(sty - stp)
stpf = stpc
else if (stp .gt. stx) then
stpf = stpmax
else
stpf = stpmin
endif
endif
c Update the interval which contains a minimizer.
if (fp .gt. fx) then
sty = stp
fy = fp
dy = dp
else
if (sgnd .lt. zero) then
sty = stx
fy = fx
dy = dx
endif
stx = stp
fx = fp
dx = dp
endif
c Compute the new step.
stp = stpf
return
end