Compare commits
9 Commits
d070f15476
...
master
Author | SHA1 | Date | |
---|---|---|---|
9ae2e43ec9 | |||
f1ccae6a02 | |||
73c017c1a5 | |||
1c1f1dacc4 | |||
bf53dd9fc2 | |||
743bcff449 | |||
08fdcb5640 | |||
18c190d1b5 | |||
6247acc070 |
@ -1,5 +1,5 @@
|
||||
import cartopy.crs as ccrs
|
||||
import numpy as np
|
||||
from .model_info_2d import model_info_2d, from_wrf
|
||||
from .model_info_2d import model_info_2d, from_wrf, from_ctl
|
||||
|
||||
__all__ = ["model_info_2d", "ccrs", "np", "from_wrf"]
|
||||
__all__ = ["model_info_2d", "ccrs", "np", "from_wrf", "from_ctl"]
|
251
model_info_2d.py
251
model_info_2d.py
@ -1,5 +1,7 @@
|
||||
import numpy as np
|
||||
import cartopy.crs as ccrs
|
||||
from typing import Union
|
||||
from .proj_info import proj_LC, proj_MERC
|
||||
|
||||
class model_info_2d(object):
|
||||
"""
|
||||
@ -20,6 +22,10 @@ class model_info_2d(object):
|
||||
type : str = None,
|
||||
globe : ccrs.Globe = None,
|
||||
debug : int = 0,
|
||||
center : list = None,
|
||||
rotate_deg : Union[int, float] = None,
|
||||
rotate_poi : list = None,
|
||||
wind_dir_rad: float = None,
|
||||
) -> None:
|
||||
|
||||
"""
|
||||
@ -32,11 +38,11 @@ class model_info_2d(object):
|
||||
dx : x方向网格距离(在目标网格投影下, 例如兰伯特是米, 等经纬是度)
|
||||
dy : y方向网格距离
|
||||
可选参数:
|
||||
lowerleft_lonlat : 左下角坐标(经纬度)
|
||||
lowerleft_lonlat : 左下角 (0, 0) 位置坐标 (经纬度)
|
||||
nt : 每个模式输出文件的时间段个数
|
||||
dt : 每个模式输出文件的时间间隔(小时)
|
||||
dt : 每个模式输出文件的时间间隔 (小时)
|
||||
var_list : 模式包含的变量列表
|
||||
type : 模式的类型(只是一个标记)
|
||||
type : 模式的类型 (只是一个标记)
|
||||
globe : 地球形状设定
|
||||
debug : 设置打印的信息
|
||||
更新记录:
|
||||
@ -60,6 +66,18 @@ class model_info_2d(object):
|
||||
感谢韩雨阳的帮助, 指出了两个差异的问题所在
|
||||
2023-12-28 15:42:11 Sola v0.0.5 增加了加密网格的功能
|
||||
2023-12-28 15:54:53 Sola v0.0.6 增加了获取绘图范围的功能, 并使其接受浮点数输入
|
||||
2024-07-22 20:36:52 Sola v0.0.7 增加了判断坐标(坐标数组)是否在模式网格内的功能
|
||||
2024-12-18 10:11:55 Sola v0.0.8 增加了与墨卡托投影相关的计算内容
|
||||
2025-04-06 16:39:26 Sola v0.0.9 增加提供网格中心坐标计算网格的功能(优先级低于左下角坐标)
|
||||
2025-04-06 16:45:22 Sola v0.0.10 增加坐标旋转功能
|
||||
修改的关键在于:
|
||||
1. 在将经纬度转化为网格的时候, 围绕中心对网格进行偏移旋转, 需要增加一步后处理
|
||||
2. 在将网格转化为经纬度的时候, 需要先将输入的网格ID旋转回去, 再计算其经纬度
|
||||
设计的网格旋转函数需要保证旋转前后中心位置不变,各网格相对位置不变即可
|
||||
注意, 这里输入的左下角坐标与通过中心计算的左下角坐标均为旋转前的
|
||||
2025-07-14 15:42:22 Sola v0.0.11 增加select方法, 用于选取某个经纬度范围的数据
|
||||
2025-07-14 23:24:51 Sola v0.0.12 改进了select方法, 并增加了判断是否在某个extent内的功能
|
||||
2025-08-03 21:51:56 Sola v0.0.13 改进了旋转的输入, 增加了读取 proj4 string 的功能
|
||||
测试记录:
|
||||
2022-09-28 16:28:10 Sola v2 新的简化网格生成方法测试完成, 结果与旧版一致
|
||||
2022-09-28 18:27:59 Sola v2 测试了使用proj_LC投影的相关方法, 网格与WRF一致
|
||||
@ -76,20 +94,42 @@ class model_info_2d(object):
|
||||
self.var_list = [] if var_list is None else var_list # 变量列表
|
||||
self.globe = ccrs.Globe(ellipse="sphere", semimajor_axis=6370000, semiminor_axis=6370000) if globe is None else globe
|
||||
if lowerleft is None:
|
||||
if not center is None:
|
||||
center_x, center_y = self.projection.transform_point(center[0], center[1], ccrs.PlateCarree())
|
||||
else:
|
||||
center_x, center_y = 0, 0
|
||||
zero_lon, zero_lat = ccrs.PlateCarree().transform_point(
|
||||
-self.dx*(self.nx-1)/2, -self.dy*(self.ny-1)/2, self.projection)
|
||||
self.lowerleft = [zero_lon, zero_lat]
|
||||
center_x-self.dx*(self.nx-1)/2, center_y-self.dy*(self.ny-1)/2, self.projection)
|
||||
self.lowerleft = [zero_lon, zero_lat] # 旋转前的左下角坐标
|
||||
else:
|
||||
if len(lowerleft) == 2:
|
||||
self.lowerleft = lowerleft # 左下角坐标(经纬度)
|
||||
self.lowerleft = lowerleft # 旋转前的左下角坐标(经纬度)
|
||||
else:
|
||||
# 这是考虑输入的左下角坐标不是经纬度, 而是某个投影系下的坐标位置, 所以先将其转化为经纬度
|
||||
zero_lon, zero_lat = ccrs.PlateCarree().transform_point(\
|
||||
lowerleft[0], lowerleft[1], lowerleft[2])
|
||||
self.lowerleft = [zero_lon, zero_lat]
|
||||
self.lowerleft = [zero_lon, zero_lat] # 旋转前的左下角经纬度
|
||||
self.lowerleft_projxy = self.projection.transform_point(
|
||||
self.lowerleft[0], self.lowerleft[1],
|
||||
ccrs.PlateCarree()
|
||||
) # 计算投影下的坐标
|
||||
) # 计算投影下的xy坐标
|
||||
if rotate_deg is None:
|
||||
if wind_dir_rad is None:
|
||||
self.rotate = 0
|
||||
else:
|
||||
self.rotate = -wind_dir_rad
|
||||
else:
|
||||
self.rotate = np.deg2rad(rotate_deg) # 计算旋转的弧度(输入是角度)
|
||||
if rotate_poi is None:
|
||||
# 如果没有给定围绕旋转的点位, 则围绕网格中心进行旋转, 注意这里是 (x, y), 而不是 (ix, iy)
|
||||
# 注意需要考虑如果指定的网格中心和投影中心不一致的情况
|
||||
if not center is None:
|
||||
self.rotate_poi_x, self.rotate_poi_y = center_x, center_y
|
||||
else:
|
||||
self.rotate_poi_x, self.rotate_poi_y = self.lowerleft_projxy[0] + (self.nx - 1)*self.dx, self.lowerleft_projxy[1] + (self.ny - 1)*self.dy
|
||||
else:
|
||||
# 如果
|
||||
self.rotate_poi_x, self.rotate_poi_y = self.projection.transform_point(*rotate_poi, ccrs.PlateCarree())
|
||||
finally:
|
||||
if debug > 0:
|
||||
print(f"{self.__dict__}")
|
||||
@ -100,6 +140,7 @@ class model_info_2d(object):
|
||||
2022-09-28 11:05:09 Sola 更新为识别传入的对象类型, 判断是否可迭代
|
||||
2022-09-28 15:21:07 Sola 增加对proj是否包含相应方法的识别
|
||||
2022-09-28 18:25:24 Sola 修正正常情况下未输出ix, iy的bug
|
||||
2025-04-06 20:33:29 Sola 加入坐标旋转的判断
|
||||
"""
|
||||
# 如果是可迭代对象, 则丢给对应的功能处理
|
||||
if hasattr(original_x, '__iter__'):
|
||||
@ -116,10 +157,10 @@ class model_info_2d(object):
|
||||
# 调用proj的方法计算经纬度
|
||||
ix, iy = self.projection.grid_id_float(lon, lat)
|
||||
else: # 如果投影方法本身不具备计算网格ID的方法, 那就手动计算网格
|
||||
x, y = self.projection.transform_point(
|
||||
original_x, original_y, original_proj)
|
||||
x, y = self.projection.transform_point(original_x, original_y, original_proj)
|
||||
ix = (x - self.lowerleft_projxy[0])/self.dx
|
||||
iy = (y - self.lowerleft_projxy[1])/self.dy
|
||||
ix, iy = self.rotate_grid_revise(ix, iy)
|
||||
return ix, iy
|
||||
|
||||
def grid_id(self, original_x, original_y, original_proj=ccrs.PlateCarree()):
|
||||
@ -145,6 +186,7 @@ class model_info_2d(object):
|
||||
2022-09-28 16:40:27 Sola 增加将输入数组转化为numpy数组的功能, 防止传入列表
|
||||
2022-10-19 18:52:25 Sola 修正了除错距离的bug
|
||||
2023-03-18 15:39:06 Sola 在计算前, 先将数组展开到1维, 返回时折叠
|
||||
2025-04-06 20:33:12 Sola 加入坐标旋转的判断
|
||||
注意事项:
|
||||
当前存在一个bug, 输入的投影必须是cartopy的投影, 否则无法计算经纬度,
|
||||
但是是否有必要在自己写的proj中加入该功能? 需要考虑
|
||||
@ -170,6 +212,7 @@ class model_info_2d(object):
|
||||
ix_array = ((ix_array - self.lowerleft_projxy[0])/ self.dx).T
|
||||
iy_array = ((iy_array - self.lowerleft_projxy[1])/ self.dy).T
|
||||
ix_array, iy_array = fold_array(ix_array, iy_array, shape)
|
||||
ix_array, iy_array = self.rotate_grid_revise(ix_array, iy_array)
|
||||
return ix_array, iy_array
|
||||
|
||||
def grid_ids(self, original_x_array, original_y_array,
|
||||
@ -189,13 +232,16 @@ class model_info_2d(object):
|
||||
通过网格id获取经纬度坐标
|
||||
2022-09-28 16:03:27 Sola 增加判断传入的是数值还是数组的功能
|
||||
2022-09-28 16:05:07 Sola 增加判断proj是否有计算网格的功能
|
||||
2025-04-06 20:32:55 Sola 加入坐标旋转的判断
|
||||
"""
|
||||
if hasattr(ix, '__iter__'): # 如果传入的是可迭代对象, 则调用相应功能
|
||||
lon, lat = self.grid_lonlats(ix, iy)
|
||||
else: # 如果不是, 则由本函数继续运算
|
||||
ix, iy = self.rotate_grid(ix, iy)
|
||||
if hasattr(self.projection, 'grid_lonlat'): # 如果投影本身可以计算
|
||||
lon, lat = self.projection.grid_lonlat(ix, iy) # 计算网格对应经纬度
|
||||
else: # 如果投影不能根据网格ID计算经纬度, 则手动计算
|
||||
# 这里则是根据网格计算了在给定投影下的坐标XY,然后将其转化为经纬度
|
||||
x = self.lowerleft_projxy[0] + ix * self.dx
|
||||
y = self.lowerleft_projxy[1] + iy * self.dy
|
||||
lon, lat = ccrs.PlateCarree().transform_point(x, y, self.projection)
|
||||
@ -208,8 +254,10 @@ class model_info_2d(object):
|
||||
2022-09-28 16:08:38 Sola 简化原本的网格计算, 使用转置的方式代替判断返回数组长度
|
||||
2022-09-28 16:40:27 Sola 增加将输入数组转化为numpy数组的功能, 防止传入列表
|
||||
2023-03-18 15:39:06 Sola 在计算前, 先将数组展开到1维, 返回时折叠
|
||||
2025-04-06 20:33:56 Sola 加入坐标旋转的判断
|
||||
"""
|
||||
ix_array, iy_array, shape = flat_array(np.array(ix_array), np.array(iy_array))
|
||||
ix_array, iy_array = self.rotate_grid(ix_array, iy_array)
|
||||
if hasattr(self.projection, 'grid_lonlats'):
|
||||
lon_array, lat_array = self.projection.grid_lonlats(ix_array, iy_array)
|
||||
else:
|
||||
@ -224,16 +272,18 @@ class model_info_2d(object):
|
||||
def get_grid(self, type=None):
|
||||
"""
|
||||
范围模式所有网格的经纬度坐标
|
||||
type: None | "corner" | "edge" | "corner_2d"
|
||||
2023-03-14 10:05:43 Sola 更新边界宽度的功能及边缘网格的功能
|
||||
获取的边缘网格从左下角开始顺时针排序(左优先)
|
||||
2023-03-14 10:30:23 Sola 经过测试, 代码可以正常运行
|
||||
2023-03-18 15:40:20 Sola 删除边界宽度的功能(没有用了)
|
||||
2024-08-02 18:01:48 Sola 添加生成边界经纬度的功能
|
||||
"""
|
||||
# 获取网格信息, 下标从0开始
|
||||
ys, xs = np.meshgrid(range(self.ny), range(self.nx), indexing='ij')
|
||||
if type is None:
|
||||
xlon, xlat = self.grid_lonlats(xs, ys) # 从网格信息获取经纬度信息
|
||||
elif type.lower() in ["corner", "c"]: # 四角的网格
|
||||
elif type.lower() in ["corner", "c"]: # 四角的网格 (4, ny, nx)
|
||||
result = []
|
||||
result.append(self.grid_lonlats(xs - 0.5, ys - 0.5))
|
||||
result.append(self.grid_lonlats(xs - 0.5, ys + 0.5))
|
||||
@ -249,6 +299,9 @@ class model_info_2d(object):
|
||||
result.append(self.grid_lonlats(xs, ys - 0.5))
|
||||
xlon = np.array([x[0] for x in result])
|
||||
xlat = np.array([x[1] for x in result])
|
||||
elif type.lower() in ["corner_2d", "c2d"]: # 四角网络 (ny + 1, nx + 1)
|
||||
ys, xs = np.meshgrid(range(self.ny+1), range(self.nx+1), indexing='ij')
|
||||
xlon, xlat = self.grid_lonlats(xs-0.5, ys-0.5)
|
||||
return xlon, xlat
|
||||
|
||||
def get_density_grid(self, density=10, flat=False):
|
||||
@ -278,7 +331,6 @@ class model_info_2d(object):
|
||||
"""
|
||||
获取用于绘图的地图投影, 目前只支持兰伯特投影
|
||||
"""
|
||||
from proj_info import proj_LC
|
||||
if type(self.projection) is proj_LC:
|
||||
proj = ccrs.LambertConformal(
|
||||
central_longitude = self.projection.stdlon,
|
||||
@ -288,14 +340,23 @@ class model_info_2d(object):
|
||||
],
|
||||
globe = self.globe
|
||||
)
|
||||
elif type(self.projection) is proj_MERC:
|
||||
proj = ccrs.Mercator(
|
||||
central_longitude=self.projection.stdlon,
|
||||
globe = self.globe
|
||||
)
|
||||
elif self.projection.__class__.__base__ is ccrs.Projection:
|
||||
proj = self.projection
|
||||
else:
|
||||
proj = ccrs.PlateCarree(globe = self.globe)
|
||||
return proj
|
||||
|
||||
def get_extent(
|
||||
self,
|
||||
cx : float,
|
||||
cy : float,
|
||||
dx : float,
|
||||
dy : float,
|
||||
cx : float = None,
|
||||
cy : float = None,
|
||||
dx : float = None,
|
||||
dy : float = None,
|
||||
ratio : float = 1
|
||||
) -> list:
|
||||
"""
|
||||
@ -306,7 +367,9 @@ class model_info_2d(object):
|
||||
dx: 中心点周围x网格数
|
||||
dy: 中心点周围y网格数
|
||||
"""
|
||||
XLON, XLAT = self.get_grid()
|
||||
if cx is None:
|
||||
cx, cy, dx, dy = self.nx/2, self.ny/2, self.nx/2, self.ny/2
|
||||
# XLON, XLAT = self.get_grid()
|
||||
# ys, ye, xs, xe = np.floor(cy-dy), np.ceil(cy+dy), np.floor(cx-dx), np.ceil(cx+dx)
|
||||
lon_start, _ = self.grid_lonlat(cx-dx*ratio, cy)
|
||||
lon_end, _ = self.grid_lonlat(cx+dx*ratio, cy)
|
||||
@ -325,6 +388,104 @@ class model_info_2d(object):
|
||||
extent = [constrain_lon(lon_start), constrain_lon(lon_end), constrain_lat(lat_start), constrain_lat(lat_end)]
|
||||
return extent
|
||||
|
||||
def is_in_domain(self, origin_x, origin_y, use_float=False, extent=None):
|
||||
"""
|
||||
用于判断坐标(经纬度)是否在模式网格范围内
|
||||
Update:
|
||||
2025-05-05 00:13:01 Sola 修正使用浮点数计算时的问题
|
||||
"""
|
||||
if use_float:
|
||||
ix, iy = self.grid_id_float(origin_x, origin_y)
|
||||
else:
|
||||
ix, iy = self.grid_id(origin_x, origin_y)
|
||||
if extent is None:
|
||||
xs, xe, ys, ye = 0, self.nx - 1, 0, self.ny - 1
|
||||
else:
|
||||
xs, xe, ys, ye = self.get_select_xy_offset(extent)
|
||||
xe, ye = xe - 1, ye - 1
|
||||
result = (xs <= ix) & (ix <= xe) & (ys <= iy) & (iy <= ye)
|
||||
return result
|
||||
|
||||
def rotate_xy(self, x, y, rotate_rad=None):
|
||||
rotate_rad = self.rotate if rotate_rad is None else rotate_rad
|
||||
x_new, y_new = rotate_xy(x, y, self.rotate_poi_x, self.rotate_poi_y, rotate_rad)
|
||||
return x_new, y_new
|
||||
|
||||
def rotate_xy_revise(self, x, y, rotate_rad=None):
|
||||
rotate_rad = self.rotate if rotate_rad is None else rotate_rad
|
||||
x_new, y_new = rotate_xy(x, y, self.rotate_poi_x, self.rotate_poi_y, -rotate_rad)
|
||||
return x_new, y_new
|
||||
|
||||
def rotate_grid(self, ix, iy, rotate_rad=None):
|
||||
rotate_rad = self.rotate if rotate_rad is None else rotate_rad
|
||||
if np.sum(np.abs(rotate_rad % (np.pi*2)) > 1e-8):
|
||||
x, y = self.lowerleft_projxy[0] + ix*self.dx, self.lowerleft_projxy[1] + iy*self.dy
|
||||
x_new, y_new = self.rotate_xy(x, y, rotate_rad)
|
||||
ix_new, iy_new = (x_new - self.lowerleft_projxy[0])/self.dx, (y_new - self.lowerleft_projxy[1])/self.dy
|
||||
else:
|
||||
ix_new, iy_new = ix, iy
|
||||
return ix_new, iy_new
|
||||
|
||||
def rotate_grid_revise(self, ix, iy, rotate_rad=None):
|
||||
rotate_rad = self.rotate if rotate_rad is None else rotate_rad
|
||||
if np.sum(np.abs(rotate_rad % (np.pi*2)) > 1e-8):
|
||||
x, y = self.lowerleft_projxy[0] + ix*self.dx, self.lowerleft_projxy[1] + iy*self.dy
|
||||
x_new, y_new = self.rotate_xy_revise(x, y, rotate_rad)
|
||||
ix_new, iy_new = (x_new - self.lowerleft_projxy[0])/self.dx, (y_new - self.lowerleft_projxy[1])/self.dy
|
||||
else:
|
||||
ix_new, iy_new = ix, iy
|
||||
return ix_new, iy_new
|
||||
|
||||
def get_select_xy_extent(self, extent: list = [-180, 180, -90, 90]):
|
||||
"""
|
||||
根据经纬度范围获取坐标范围
|
||||
"""
|
||||
nx, ny = self.nx, self.ny
|
||||
lon_s, lon_e, lat_s, lat_e = extent
|
||||
lon_list = np.concatenate([
|
||||
np.linspace(lon_s, lon_e, nx-1),
|
||||
np.linspace(lon_e, lon_e, ny-1),
|
||||
np.linspace(lon_e, lon_s, nx-1),
|
||||
np.linspace(lon_s, lon_s, ny-1)
|
||||
])
|
||||
lat_list = np.concatenate([
|
||||
np.linspace(lat_s, lat_s, nx-1),
|
||||
np.linspace(lat_s, lat_e, ny-1),
|
||||
np.linspace(lat_e, lat_e, nx-1),
|
||||
np.linspace(lat_e, lat_s, ny-1)
|
||||
])
|
||||
x_list, y_list = self.grid_id_float(lon_list, lat_list)
|
||||
xs_float, xe_float, ys_float, ye_float = np.min(x_list), np.max(x_list), np.min(y_list), np.max(y_list)
|
||||
return xs_float, xe_float, ys_float, ye_float
|
||||
|
||||
def get_select_xy_offset(self, extent: list = [-180, 180, -90, 90]):
|
||||
"""
|
||||
根据经纬度范围获取坐标偏移量
|
||||
"""
|
||||
nx, ny = self.nx, self.ny
|
||||
xs_float, xe_float, ys_float, ye_float = self.get_select_xy_extent(extent)
|
||||
limit_range = lambda x, vmin, vmax: x + (vmin - x)*(x < vmin) - (x - vmax)*(x > vmax) # x \in [xs, xe]
|
||||
xs, xe, ys, ye = round(xs_float), round(xe_float), round(ys_float), round(ye_float)
|
||||
xs, xe = limit_range(xs, 0, nx-1), limit_range(xe, 0, nx-1)+1
|
||||
ys, ye = limit_range(ys, 0, ny-1), limit_range(ye, 0, ny-1)+1
|
||||
return xs, xe, ys, ye
|
||||
|
||||
|
||||
def select(self, data, extent: list = [-180, 180, -90, 90]):
|
||||
"""
|
||||
根据经纬度范围截取数据
|
||||
"""
|
||||
xs, xe, ys, ye = self.get_select_xy_offset(extent)
|
||||
data_select = data[..., ys:ye, xs:xe]
|
||||
return data_select
|
||||
|
||||
|
||||
def rotate_xy(xx, yy, cx, cy, rad):
|
||||
xx_offset = (xx - cx)*np.cos(rad) - (yy - cy)*np.sin(rad)
|
||||
yy_offset = (xx - cx)*np.sin(rad) + (yy - cy)*np.cos(rad)
|
||||
xx_new, yy_new = cx + xx_offset, cy + yy_offset
|
||||
return xx_new, yy_new
|
||||
|
||||
def flat_array(
|
||||
x : np.ndarray,
|
||||
y : np.ndarray
|
||||
@ -371,20 +532,58 @@ def from_wrf(file: str) -> model_info_2d:
|
||||
|
||||
# import need library
|
||||
import netCDF4 as nc
|
||||
from proj_info import proj_LC
|
||||
# open dataset
|
||||
with nc.Dataset(file) as nf:
|
||||
dx, dy = nf.DX, nf.DY
|
||||
nx, ny = nf.dimensions["west_east"].size, nf.dimensions["south_north"].size
|
||||
truelat1 = nf.TRUELAT1
|
||||
stdlon = nf.STAND_LON
|
||||
lat1, lon1 = nf.CEN_LAT, nf.CEN_LON
|
||||
if nf.MAP_PROJ == 1: # Lambert proj
|
||||
dx, dy = nf.DX, nf.DY
|
||||
nx, ny = nf.dimensions["west_east"].size, nf.dimensions["south_north"].size
|
||||
truelat1, truelat2 = nf.TRUELAT1, nf.TRUELAT2
|
||||
stdlon = nf.STAND_LON
|
||||
lat1, lon1 = nf.CEN_LAT, nf.CEN_LON
|
||||
truelat2 = nf.TRUELAT2
|
||||
# make projection
|
||||
proj = proj_LC(dx=dx, dy=dy, truelat1=truelat1, truelat2=truelat2,
|
||||
lat1=lat1, lon1=lon1, stdlon=stdlon, nx=nx, ny=ny)
|
||||
# make model_info
|
||||
model = model_info_2d(proj=proj, nx=nx, ny=ny, dx=dx, dy=dy,
|
||||
lowerleft=proj.grid_lonlat(0, 0))
|
||||
elif nf.MAP_PROJ == 3: # Mercator proj
|
||||
proj = proj_MERC(dx=dx, dy=dy, truelat1=truelat1, lat1=lat1,
|
||||
lon1=lon1, stdlon=stdlon, nx=nx, ny=ny)
|
||||
elif nf.MAP_PROJ == 6: # lon-lat proj
|
||||
proj = ccrs.PlateCarree
|
||||
dx /= 111177.473
|
||||
dy /= 111177.473
|
||||
|
||||
# make model_info
|
||||
model = model_info_2d(proj=proj, nx=nx, ny=ny, dx=dx, dy=dy,
|
||||
lowerleft=proj.grid_lonlat(0, 0))
|
||||
return model
|
||||
|
||||
def from_ctl(file: str) -> model_info_2d:
|
||||
with open(file, "r") as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
if "PDEF" in line.upper():
|
||||
if "LCC" in line.upper():
|
||||
_, nx, ny, _, lat1, lon1, knowi, knowj, truelat1, truelat2, stdlon, dx, dy = line.split()
|
||||
nx, ny = int(nx), int(ny)
|
||||
lat1, lon1, knowi, knowj, truelat1, truelat2, stdlon, dx, dy =\
|
||||
float(lat1), float(lon1), float(knowi), float(knowj), float(truelat1), float(truelat2), float(stdlon), float(dx), float(dy)
|
||||
proj = proj_LC(dx=dx, dy=dy, truelat1=truelat1, truelat2=truelat2, lat1=lat1, lon1=lon1,
|
||||
knowni=knowi, knownj=knowj, stdlon=stdlon, nx=nx, ny=ny)
|
||||
model = model_info_2d(proj=proj, nx=nx, ny=ny, dx=dx, dy=dy, lowerleft=proj.grid_lonlat(0, 0))
|
||||
return model
|
||||
|
||||
def from_ncatts(file: str) -> model_info_2d:
|
||||
"""
|
||||
proj4 example:
|
||||
+proj=lcc +lat_1=25 +lat_2=47 +lat_0=0 +lon_0=105 +ellps=sphere +a=6370000 +b=6370000
|
||||
+proj=lonlat
|
||||
"""
|
||||
import netCDF4 as nc
|
||||
with nc.Dataset(file) as nf:
|
||||
dx, dy, nx, ny, lowerleft = nf.dx, nf.dy, nf.nx, nf.ny, nf.lowerleft
|
||||
proj = ccrs.CRS(getattr(nf, "proj4", "+latlon"))
|
||||
model = model_info_2d(proj=proj, nx=nx, ny=ny, dx=dx, dy=dy, lowerleft=lowerleft)
|
||||
return model
|
||||
|
||||
|
||||
|
||||
|
277
proj_info.py
277
proj_info.py
@ -1,11 +1,16 @@
|
||||
import numpy as np
|
||||
from math import radians, cos, tan, log10, sin, sqrt, atan2, atan, degrees
|
||||
import logging
|
||||
|
||||
"""
|
||||
更新记录:
|
||||
2022-09-23 11:59:01 Sola v1 编写源代码, 修正set_lc代码错误的问题
|
||||
2024-12-16 09:54:40 Sola v2 增加变量检测的内容
|
||||
2024-12-17 15:39:45 Sola v3 增加墨卡托投影
|
||||
"""
|
||||
|
||||
# logging.basicConfig(format='[%(asctime)s][%(levelname)s]: %(message)s',
|
||||
# level=logging.DEBUG, datefmt='%Y-%m-%dT%H:%M:%S %Z')
|
||||
EARTH_RADIUS_M = 6370000.
|
||||
|
||||
class proj_info(object):
|
||||
@ -17,10 +22,10 @@ class proj_info(object):
|
||||
nxmax=None, hemi=None, cone=None, polei=None, polej=None,
|
||||
rsw=None, knowni=None, knownj=None, re_m=EARTH_RADIUS_M,
|
||||
init=False, wrap=False, rho0=None, nc=None, bigc=None, comp_ll=False,
|
||||
gauss_lat=None) -> None:
|
||||
gauss_lat=None, nx=None, ny=None) -> None:
|
||||
self.code = code
|
||||
self.lat1 = lat1 # SW latitude (1,1) in degrees (-90->90N) 格点(1, 1)纬度, 西南角, 度
|
||||
self.lon1 = lon1 # SW longitude (1,1) in degrees (-180->180E) 格点(1, 1)经度, 西南角, 度
|
||||
self.lat1 = lat1 # SW latitude (1,1) in degrees (-90->90N) 格点(1, 1)纬度, 西南角, 度, 如果没有指定 knowj, 则为网格中心
|
||||
self.lon1 = lon1 # SW longitude (1,1) in degrees (-180->180E) 格点(1, 1)经度, 西南角, 度, 如果没有指定 knowi, 则为网格中心
|
||||
self.lat0 = lat0
|
||||
self.lon0 = lon0
|
||||
self.dx = dx # Grid spacing in meters at truelats, used x方向网格距, m
|
||||
@ -54,7 +59,63 @@ class proj_info(object):
|
||||
self.bigc = bigc
|
||||
self.comp_ll = comp_ll
|
||||
self.gauss_lat = gauss_lat
|
||||
self.nx = nx
|
||||
self.ny = ny
|
||||
|
||||
if self.knowni is None and self.knownj is None:
|
||||
self.knowni = (self.nx + 1) / 2
|
||||
self.knownj = (self.ny + 1) / 2
|
||||
if self.lat1:
|
||||
if abs(self.lat1) > 90:
|
||||
logging.error("Latitude of origin corner required as follows: -90N <= lat1 < = 90.N")
|
||||
if self.lon1: # 限制经度范围
|
||||
dummy_lon1 = (self.lon1 + 180) % 360 - 180
|
||||
self.lon1 = dummy_lon1
|
||||
if self.lon0: # 限制中央经线范围
|
||||
dummy_lon0 = (self.lon0 + 180) % 360 - 180
|
||||
self.lon0 = dummy_lon0
|
||||
if self.dx:
|
||||
if self.dx <= 0 and self.code != "PROJ_LATLON":
|
||||
logging.error("Require grid spacing (dx) in meters be positive!")
|
||||
if self.stdlon:
|
||||
dummp_stdlon = (self.stdlon + 180) % 360 - 180
|
||||
self.stdlon = dummp_stdlon
|
||||
if self.truelat1:
|
||||
if abs(self.truelat1) > 90:
|
||||
logging.error("Set true latitude 1 for all projections!")
|
||||
if not self.dy and self.dx: # 设置dy, 如果dy不存在, 则利用dx给定
|
||||
self.dy = self.dx
|
||||
if self.dx:
|
||||
if self.code in ["PROJ_LC", "PROJ_PS", "PROJ_PS_WGS84", "PROJ_A:NERS_NAD83", "PROJ_MERC"]:
|
||||
if self.truelat1 < 0: # 所在半球, 1为北半球, -1为南半球
|
||||
self.hemi = -1
|
||||
else:
|
||||
self.hemi = 1
|
||||
self.rebydx = self.re_m / self.dx # 地球半径除以网格距
|
||||
|
||||
def grid_id_float(self, lon, lat):
|
||||
"""返回以0为开始的下标"""
|
||||
i,j = self.llij(lon, lat)
|
||||
return i - 1, j - 1
|
||||
|
||||
def grid_ids_float(self, lon_array, lat_array):
|
||||
"""返回以0为开始的下标数组"""
|
||||
i_array, j_array = self.llij(lon_array, lat_array)
|
||||
return i_array - 1, j_array - 1
|
||||
|
||||
def grid_lonlat(self, ix, iy):
|
||||
"""返回对应网格(以0为下标开始)的经纬度"""
|
||||
lon, lat = self.ijll(ix + 1, iy + 1)
|
||||
return lon, lat
|
||||
|
||||
def grid_lonlats(self, ix_array, iy_array):
|
||||
"""返回对应网格数组(以0为下标开始)的经纬度数组"""
|
||||
lon_array, lat_array = self.ijll(ix_array + 1, iy_array + 1)
|
||||
return lon_array, lat_array
|
||||
|
||||
def transform_point(self, lon, lat, proj_useless=None):
|
||||
"""返回对应经纬度坐标的网格坐标(m)"""
|
||||
pass
|
||||
|
||||
class proj_LC(proj_info):
|
||||
"""
|
||||
@ -86,25 +147,11 @@ class proj_LC(proj_info):
|
||||
if truelat1 is None or truelat2 is None or lat1 is None or lon1 is None\
|
||||
or nx is None or ny is None or stdlon is None or dx is None:
|
||||
print('[ERROR] cannot generate proj!')
|
||||
if abs(lat1) > 90 or dx <= 0 or truelat1 > 90:
|
||||
pass
|
||||
dummy_lon1 = (lon1 + 180) % 360 - 180 # 限制经度范围
|
||||
dummy_stdlon = (stdlon + 180) % 360 - 180 # 限制中央经线范围
|
||||
if knowni is None and knownj is None:
|
||||
knowni = (nx + 1) / 2
|
||||
knownj = (ny + 1) / 2
|
||||
if dy is None: # 设置dy, 如果dy不存在, 则利用dx给定
|
||||
dy = dx
|
||||
if truelat1 < 0: # 所在半球, 1为北半球, -1为南半球
|
||||
hemi = -1
|
||||
else:
|
||||
hemi = 1
|
||||
if abs(truelat2) > 90: # 如果标准纬线2超过范围, 则用标准纬线1赋值
|
||||
truelat2 = truelat1
|
||||
super().__init__(code=code, lat1=lat1, lon1=dummy_lon1, dx=dx, dy=dy,
|
||||
stdlon=dummy_stdlon, truelat1=truelat1, truelat2=truelat2, hemi=hemi,
|
||||
knowni=knowni, knownj=knownj, re_m=re_m) # 初始化各变量
|
||||
self.rebydx = re_m / dx # 地球半径除以网格距
|
||||
super().__init__(code=code, lat1=lat1, lon1=lon1, dx=dx, dy=dy,
|
||||
stdlon=stdlon, truelat1=truelat1, truelat2=truelat2,
|
||||
knowni=knowni, knownj=knownj, re_m=re_m, nx=nx, ny=ny) # 初始化各变量
|
||||
self.set_lc() # 计算其他变量
|
||||
self.check_init() # 确认是否所有变量都计算完毕
|
||||
|
||||
@ -137,23 +184,7 @@ class proj_LC(proj_info):
|
||||
else:
|
||||
self.cone = sin(radians(abs(self.truelat1)))
|
||||
|
||||
def llij_lc(self, lon, lat):
|
||||
"""通过经纬度计算坐标"""
|
||||
if not self.init:
|
||||
print('[ERROR] proj cannot use!')
|
||||
deltalon = lon - self.stdlon # 计算经度与中央经线差
|
||||
deltalon = (deltalon + 180) % 360 - 180 # 限定范围 -180~180
|
||||
ctl1r = cos(radians(self.truelat1)) # 剩下就看不懂了
|
||||
rm = self.rebydx * ctl1r / self.cone * (tan(radians(90*self.hemi \
|
||||
- lat)/2)/tan(radians(90*self.hemi - self.truelat1)/2))**self.cone
|
||||
arg = self.cone * radians(deltalon)
|
||||
i = self.polei + self.hemi * rm * sin(arg)
|
||||
j = self.polej - rm * cos(arg)
|
||||
i = self.hemi * i
|
||||
j = self.hemi * j
|
||||
return i, j
|
||||
|
||||
def llijs_lc(self, lon, lat):
|
||||
def llij(self, lon, lat):
|
||||
"""通过经纬度序列计算坐标"""
|
||||
if not self.init:
|
||||
print('[ERROR] proj cannot use!')
|
||||
@ -169,32 +200,7 @@ class proj_LC(proj_info):
|
||||
j = self.hemi * j
|
||||
return i, j
|
||||
|
||||
def ijll_lc(self, i, j):
|
||||
"""通过坐标计算经纬度"""
|
||||
if not self.init:
|
||||
print('[ERROR] proj cannot use!')
|
||||
chi1 = radians(90 - self.hemi * self.truelat1)
|
||||
chi2 = radians(90 - self.hemi * self.truelat2)
|
||||
inew = self.hemi * i
|
||||
jnew = self.hemi * j
|
||||
xx = inew - self.polei
|
||||
yy = self.polej - jnew
|
||||
r2 = xx**2 + yy**2
|
||||
r = sqrt(r2) / self.rebydx
|
||||
if r2 == 0.:
|
||||
lat = self.hemi * 90
|
||||
lon = self.stdlon
|
||||
else:
|
||||
lon = self.stdlon + degrees(atan2(self.hemi*xx, yy))/self.cone
|
||||
lon = (lon + 180) % 360 - 180
|
||||
if chi1 == chi2:
|
||||
chi = 2 * atan((r/tan(chi1))**(1/self.cone) * tan(chi1*0.5))
|
||||
else:
|
||||
chi = 2 * atan((r*self.cone/sin(chi1))**(1/self.cone) * tan(chi1*0.5))
|
||||
lat = (90 - degrees(chi)) * self.hemi
|
||||
return lon, lat
|
||||
|
||||
def ijlls_lc(self, i, j):
|
||||
def ijll(self, i, j):
|
||||
"""
|
||||
通过坐标计算经纬度
|
||||
2022-09-28 18:22:26 Sola 修正计算chi时, xx, yy未进行筛选的问题
|
||||
@ -205,8 +211,8 @@ class proj_LC(proj_info):
|
||||
chi2 = np.radians(90 - self.hemi * self.truelat2)
|
||||
inew = self.hemi * i
|
||||
jnew = self.hemi * j
|
||||
xx = inew - self.polei
|
||||
yy = self.polej - jnew
|
||||
xx = np.array(inew - self.polei)
|
||||
yy = np.array(self.polej - jnew)
|
||||
r2 = xx**2 + yy**2
|
||||
r = np.sqrt(r2) / self.rebydx
|
||||
lon = np.zeros(r2.shape)
|
||||
@ -231,45 +237,116 @@ class proj_LC(proj_info):
|
||||
else:
|
||||
self.init = True
|
||||
|
||||
def grid_id_float(self, lon, lat):
|
||||
"""返回以0为开始的下标"""
|
||||
i,j = self.llij_lc(lon, lat)
|
||||
return i - 1, j - 1
|
||||
|
||||
def grid_ids_float(self, lon_array, lat_array):
|
||||
"""返回以0为开始的下标数组"""
|
||||
i_array, j_array = self.llijs_lc(lon_array, lat_array)
|
||||
return i_array - 1, j_array - 1
|
||||
|
||||
def grid_lonlat(self, ix, iy):
|
||||
"""返回对应网格(以0为下标开始)的经纬度"""
|
||||
lon, lat = self.ijll_lc(ix + 1, iy + 1)
|
||||
return lon, lat
|
||||
|
||||
def grid_lonlats(self, ix_array, iy_array):
|
||||
"""返回对应网格数组(以0为下标开始)的经纬度数组"""
|
||||
lon_array, lat_array = self.ijlls_lc(ix_array + 1, iy_array + 1)
|
||||
return lon_array, lat_array
|
||||
|
||||
def transform_point(self, lon, lat, proj_useless=None):
|
||||
"""返回对应经纬度坐标的网格坐标(m)"""
|
||||
ix, iy = self.llij_lc(lon, lat)
|
||||
cx, cy1 = self.llij_lc(self.stdlon, self.truelat1)
|
||||
cx, cy2 = self.llij_lc(self.stdlon, self.truelat2)
|
||||
ix, iy = self.llij(lon, lat)
|
||||
cx, cy1 = self.llij(self.stdlon, self.truelat1)
|
||||
cx, cy2 = self.llij(self.stdlon, self.truelat2)
|
||||
cy = (cy1 + cy2) / 2
|
||||
return (ix - cx) * self.dx, (iy - cy) * self.dy
|
||||
|
||||
|
||||
class proj_MERC(proj_info):
|
||||
"""
|
||||
参考WPS源码中的proj_MERC改写, 因为WRF计算得到的网格与cartopy的不同
|
||||
更新记录:
|
||||
2024-12-17 15:12:51 Sola 编写源代码
|
||||
"""
|
||||
def __init__(self, code='PROJ_MERC', truelat1=None, lat1=None,
|
||||
lon1=None, knowni=None, knownj=None, stdlon=None, dx=None,
|
||||
dy=None, nx=None, ny=None, re_m=EARTH_RADIUS_M) -> None:
|
||||
"""
|
||||
初始化
|
||||
必要参数:
|
||||
code 投影编码
|
||||
truelat1 标准纬线1
|
||||
lat1 参考点纬度
|
||||
lon1 参考点经度
|
||||
stdlon 中央经线
|
||||
dx x方向网格距(m)
|
||||
nx x方向格点数
|
||||
ny y方向格点数
|
||||
可选参数:
|
||||
knowni 参考点x方向坐标, 默认为网格中心
|
||||
knownj 参考点y方向坐标, 默认为网格中心
|
||||
dy y方向网格距(m), 默认与dx一致
|
||||
re_m 地球半径, 默认为6370000
|
||||
"""
|
||||
if truelat1 is None is None or lat1 is None or lon1 is None\
|
||||
or nx is None or ny is None or dx is None:
|
||||
print('[ERROR] cannot generate proj!')
|
||||
super().__init__(code=code, lat1=lat1, lon1=lon1, dx=dx, dy=dy, nx=nx, ny=ny,
|
||||
stdlon=stdlon, truelat1=truelat1, knowni=knowni, knownj=knownj, re_m=re_m) # 初始化各变量
|
||||
self.set_merc() # 计算其他变量
|
||||
|
||||
def set_merc(self):
|
||||
clain = np.cos(np.deg2rad(self.truelat1)) # 标准纬线在赤道面投影到地心的距离/地球半径
|
||||
self.dlon = self.dx / (self.re_m * clain) # 标准纬线附近,单位网格的经度变化
|
||||
# 计算原点到赤道的距离,并保存在 self.rsw 变量中
|
||||
self.rsw = 0 if self.lat1 == 0 else np.log(np.tan(0.5*(np.deg2rad(self.lat1+90))))/self.dlon
|
||||
|
||||
def llij(self, lon, lat):
|
||||
deltalon = lon - self.lon1
|
||||
deltalon = (deltalon + 180) % 360 - 180
|
||||
i = self.knowni + deltalon / np.rad2deg(self.dlon)
|
||||
j = self.knownj + np.log(np.tan(0.5*np.deg2rad(lat + 90)))/self.dlon - self.rsw
|
||||
return i, j
|
||||
|
||||
def ijll(self, i, j):
|
||||
lat = 2*np.rad2deg(np.arctan(np.exp(self.dlon*(self.rsw + j - self.knownj)))) - 90
|
||||
lon = (i - self.knowni) * np.rad2deg(self.dlon) + self.lon1
|
||||
lon = (lon + 180) % 360 - 180
|
||||
return lon, lat
|
||||
|
||||
def transform_point(self, lon, lat, proj_useless=None):
|
||||
"""返回对应经纬度坐标的网格坐标(m)"""
|
||||
ix, iy = self.llij(lon, lat)
|
||||
cx, cy = self.llij(self.stdlon, self.truelat1)
|
||||
return (ix - cx) * self.dx, (iy - cy) * self.dy
|
||||
|
||||
if __name__ == '__main__':
|
||||
proj = proj_LC(truelat1=45, truelat2=15, lat1=30, lon1=108, stdlon=108, dx=3000, dy=3000, nx=2025, ny=2025)
|
||||
proj.llij_lc(108, 30)
|
||||
proj.ijll_lc(1013, 1013)
|
||||
x = np.arange(1, 2000, 10)
|
||||
y = np.arange(1, 2000, 10)
|
||||
print(proj.ijlls_lc(x, y))
|
||||
print(proj.ijll_lc(x[0], y[0]), proj.ijll_lc(x[-1], y[-1]))
|
||||
x, y = proj.llij_lc(0, 90)
|
||||
lon, lat = proj.ijll_lc(x, y)
|
||||
x, y = proj.llij_lc(lon, lat)
|
||||
lon1, lat1 = proj.ijll_lc(x, y)
|
||||
print(lon, lat, x, y, lon1, lat1)
|
||||
"""
|
||||
主要用于测试投影的基本功能,坐标前后转换是否正常,具体测试项如下:
|
||||
1. 构建投影
|
||||
2. 坐标点位转换以及转换结果是否一致
|
||||
3. 坐标序列转换以及转换结果是否一致
|
||||
"""
|
||||
logging.info("test proj_LC")
|
||||
try:
|
||||
proj = proj_LC(truelat1=45, truelat2=15, lat1=30, lon1=108, stdlon=108, dx=3000, dy=3000, nx=2025, ny=2025)
|
||||
x0, y0 = 0, 0
|
||||
lon, lat = proj.grid_lonlat(x0, y0)
|
||||
x1, y1 = proj.grid_id_float(lon, lat)
|
||||
if not ((x0 - x1)**2 + (y0 - y1)**2)**0.5 < 1e-5:
|
||||
logging.error((x0, y0), (x1, y1))
|
||||
raise ValueError("point convert error!")
|
||||
x0_array, y0_array = np.arange(1, 2000, 10), np.arange(1, 2000, 10)
|
||||
lon_array, lat_array = proj.grid_lonlat(x0_array, y0_array)
|
||||
x1_array, y1_array = proj.grid_id_float(lon_array, lat_array)
|
||||
if not np.max(((x0_array - x1_array)**2 + (y0_array - y1_array)**2)**0.5) < 1e-5:
|
||||
raise ValueError("array convert error!")
|
||||
except Exception as e:
|
||||
logging.error("proj_LC not pass!")
|
||||
logging.error(e)
|
||||
else:
|
||||
logging.info("proj_LC pass.")
|
||||
|
||||
logging.info("test proj_MERC")
|
||||
try:
|
||||
proj = proj_MERC(truelat1=30, lat1=30, lon1=108, stdlon=108, dx=3000, dy=3000, nx=2025, ny=2025)
|
||||
x0, y0 = 0, 0
|
||||
lon, lat = proj.grid_lonlat(x0, y0)
|
||||
x1, y1 = proj.grid_id_float(lon, lat)
|
||||
if not ((x0 - x1)**2 + (y0 - y1)**2)**0.5 < 1e-5:
|
||||
logging.error(f"{(x0, y0)}, {(x1, y1)}")
|
||||
raise ValueError("point convert error!")
|
||||
x0_array, y0_array = np.arange(1, 2000, 10), np.arange(1, 2000, 10)
|
||||
lon_array, lat_array = proj.grid_lonlat(x0_array, y0_array)
|
||||
x1_array, y1_array = proj.grid_id_float(lon_array, lat_array)
|
||||
if not np.max(((x0_array - x1_array)**2 + (y0_array - y1_array)**2)**0.5) < 1e-5:
|
||||
raise ValueError("array convert error!")
|
||||
except Exception as e:
|
||||
logging.error("proj_MERC not pass!")
|
||||
logging.error(e)
|
||||
else:
|
||||
logging.info("proj_MERC pass.")
|
Reference in New Issue
Block a user