150 lines
6.8 KiB
Python
150 lines
6.8 KiB
Python
import numpy as np
|
|
import cartopy.crs as ccrs
|
|
class model_info_2d(object):
|
|
"""
|
|
用于创建模式网格, 并包含了相关信息, 提供了方便坐标与经纬度相互转换的工具
|
|
基于Numpy和Cartopy.crs构建, 仅支持方形网格
|
|
"""
|
|
def __init__(self, proj, nx, ny, dx, dy, lowerleft=None, \
|
|
nt=None, dt=None, var_list=None, type=None) -> None:
|
|
"""
|
|
用于初始化网格, 如果不给定左下角经纬度坐标, 则默认投影坐标原点位置为网格
|
|
中心, 并依据此建立网格
|
|
必选参数:
|
|
proj : 目标网格所在的投影, 是cartopy.crs类
|
|
nx : x方向网格个数
|
|
ny : y方向网格个数
|
|
dx : x方向网格距离(在目标网格投影下, 例如兰伯特是米, 等经纬是度)
|
|
dy : y方向网格距离
|
|
可选参数:
|
|
lowerleft_lonlat : 左下角坐标(经纬度)
|
|
nt : 每个模式输出文件的时间段个数
|
|
dt : 每个模式输出文件的时间间隔(小时)
|
|
var_list : 模式包含的变量列表
|
|
type : 模式的类型(只是一个标记)
|
|
更新记录:
|
|
2022-08-20 22:08:27 Sola 编写源代码
|
|
2022-08-20 22:08:33 Sola 添加注释
|
|
2022-08-21 11:29:55 Sola 修改输出网格为ny, nx形式
|
|
2022-08-21 12:25:09 Sola 增加对非经纬度左下角的支持
|
|
2022-08-21 16:27:56 Sola 修正返回网格id数组类型为float的问题
|
|
"""
|
|
if type is None:
|
|
self.type = 'unknown'
|
|
else:
|
|
self.type = type # 类型
|
|
self.nx = nx # x方向网格数
|
|
self.ny = ny # y方向网格数
|
|
self.projection = proj # 投影类别, 使用cartopy的crs提供
|
|
self.dx = dx # 在该投影下x方向间距
|
|
self.dy = dy # 在该投影下y方向间距
|
|
if dt is None: # 时间间隔(小时)
|
|
self.dt = 1
|
|
else:
|
|
self.dt = dt
|
|
if nt is None: # 每个文件中包含多少时间点
|
|
self.nt = 1
|
|
else:
|
|
self.nt = nt
|
|
if lowerleft is None:
|
|
zero_lon, zero_lat = ccrs.PlateCarree().transform_point(\
|
|
-dx*(nx-1)/2, -dy*(ny-1)/2, proj)
|
|
self.lowerleft = [zero_lon, zero_lat]
|
|
else:
|
|
if len(lowerleft) == 2:
|
|
self.lowerleft = lowerleft # 左下角坐标(经纬度)
|
|
else:
|
|
zero_lon, zero_lat = ccrs.PlateCarree().transform_point(\
|
|
lowerleft[0], lowerleft[1], lowerleft[2])
|
|
self.lowerleft = [zero_lon, zero_lat]
|
|
if var_list is None: # 变量列表
|
|
self.var_list = []
|
|
else:
|
|
self.var_list = var_list
|
|
self.lowerleft_projxy = self.projection.transform_point(
|
|
self.lowerleft[0], self.lowerleft[1],
|
|
ccrs.PlateCarree()
|
|
) # 计算投影下的坐标
|
|
|
|
def grid_id_float(self, original_x, original_y, original_proj=ccrs.PlateCarree()):
|
|
"""
|
|
获取经纬度对应的网格xy值, 返回浮点数
|
|
"""
|
|
x, y = self.projection.transform_point(original_x, original_y, original_proj)
|
|
ix = (x - self.lowerleft_projxy[0])/self.dx
|
|
iy = (y - self.lowerleft_projxy[1])/self.dy
|
|
return ix, iy
|
|
|
|
def grid_id(self, original_x, original_y, original_proj=ccrs.PlateCarree()):
|
|
"""
|
|
获取经纬度最近的网格xy值, 返回整数
|
|
"""
|
|
ix, iy = self.grid_id_float(original_x, original_y, original_proj)
|
|
ix, iy = [round(n) for n in [ix, iy]]
|
|
return ix, iy
|
|
|
|
def grid_ids_float(self, original_x_array, original_y_array, original_proj=ccrs.PlateCarree()):
|
|
"""
|
|
将经纬度向量或矩阵转换为网格xy值, 返回浮点数
|
|
2022-08-21 16:34:07 Sola 修正了忘了求网格的错误(这错误太不应该了)
|
|
2022-08-21 17:53:45 Sola 修正了两个ix_array的错误(复制粘贴的恶果)
|
|
"""
|
|
result_array = self.projection.transform_points(
|
|
original_proj, original_x_array, original_y_array
|
|
)
|
|
if len(result_array.shape) == 2:
|
|
result_array[:, 0] = (result_array[:, 0] - self.lowerleft_projxy[0])/self.dx
|
|
result_array[:, 1] = (result_array[:, 1] - self.lowerleft_projxy[1])/self.dy
|
|
ix_array, iy_array = result_array[:, 0], result_array[:, 1]
|
|
else:
|
|
result_array[:, :, 0] = (result_array[:, :, 0] - self.lowerleft_projxy[0])/self.dx
|
|
result_array[:, :, 1] = (result_array[:, :, 1] - self.lowerleft_projxy[1])/self.dy
|
|
ix_array, iy_array = result_array[:, :, 0], result_array[:, :, 1]
|
|
return ix_array, iy_array
|
|
|
|
def grid_ids(self, original_x_array, original_y_array, original_proj=ccrs.PlateCarree()):
|
|
"""
|
|
将经纬度向量或矩阵转换为网格xy值, 返回整数
|
|
2022-08-21 16:30:39 Sola 修正了返回数组类型为float的问题
|
|
"""
|
|
ix_array, iy_array = self.grid_ids_float(
|
|
original_x_array, original_y_array, original_proj
|
|
)
|
|
ix_array, iy_array = [np.round(n_array) for n_array in [ix_array, iy_array]]
|
|
return ix_array.astype(int), iy_array.astype(int)
|
|
|
|
def grid_lonlat(self, ix, iy):
|
|
"""
|
|
通过网格id获取经纬度坐标
|
|
"""
|
|
x = self.lowerleft_projxy[0] + ix * self.dx
|
|
y = self.lowerleft_projxy[1] + iy * self.dy
|
|
lon, lat = ccrs.PlateCarree().transform_point(x, y, self.projection)
|
|
return lon, lat
|
|
|
|
def grid_lonlats(self, ix_array, iy_array):
|
|
"""
|
|
通过网格id矩阵获得经纬度坐标矩阵
|
|
"""
|
|
x_array = self.lowerleft_projxy[0] + ix_array * self.dx
|
|
y_array = self.lowerleft_projxy[1] + iy_array * self.dy
|
|
result_array = ccrs.PlateCarree().transform_points(self.projection, x_array, y_array)
|
|
if len(result_array.shape) == 2:
|
|
lon_array, lat_array = result_array[:, 0], result_array[:, 1]
|
|
else:
|
|
lon_array, lat_array = result_array[:, :, 0], result_array[:, :, 1]
|
|
return lon_array, lat_array
|
|
|
|
def get_grid(self):
|
|
"""
|
|
范围模式所有网格的经纬度坐标
|
|
"""
|
|
zero_x, zero_y = self.lowerleft_projxy
|
|
array_temp = np.arange(zero_x, zero_x+self.nx*self.dx, self.dx)
|
|
xlon = np.reshape(array_temp.repeat(self.ny).T, [self.nx, self.ny]).T
|
|
array_temp = np.arange(zero_y, zero_y+self.ny*self.dy, self.dy)
|
|
xlat = np.reshape(array_temp.repeat(self.nx), [self.ny, self.nx])
|
|
array_temp = ccrs.PlateCarree().transform_points(self.projection, xlon, xlat)
|
|
xlon = array_temp[:, :, 0]
|
|
xlat = array_temp[:, :, 1]
|
|
return xlon, xlat |