566 lines
29 KiB
Python
566 lines
29 KiB
Python
import numpy as np
|
||
import cartopy.crs as ccrs
|
||
from typing import Union
|
||
from .proj_info import proj_LC, proj_MERC
|
||
|
||
class model_info_2d(object):
|
||
"""
|
||
用于创建模式网格, 并包含了相关信息, 提供了方便坐标与经纬度相互转换的工具
|
||
基于Numpy和Cartopy.crs构建, 仅支持方形网格
|
||
"""
|
||
def __init__(
|
||
self,
|
||
proj : ccrs.PlateCarree = None,
|
||
nx : int = None,
|
||
ny : int = None,
|
||
dx : float = None,
|
||
dy : float = None,
|
||
lowerleft : list = None,
|
||
nt : int = None,
|
||
dt : float = None,
|
||
var_list : list = None,
|
||
type : str = None,
|
||
globe : ccrs.Globe = None,
|
||
debug : int = 0,
|
||
center : list = None,
|
||
rotate_deg : Union[int, float] = 0,
|
||
rotate_poi : list = None,
|
||
) -> None:
|
||
|
||
"""
|
||
用于初始化网格, 如果不给定左下角经纬度坐标, 则默认投影坐标原点位置为网格
|
||
中心, 并依据此建立网格
|
||
必选参数:
|
||
proj : 目标网格所在的投影, 是cartopy.crs类
|
||
nx : x方向网格个数
|
||
ny : y方向网格个数
|
||
dx : x方向网格距离(在目标网格投影下, 例如兰伯特是米, 等经纬是度)
|
||
dy : y方向网格距离
|
||
可选参数:
|
||
lowerleft_lonlat : 左下角 (0, 0) 位置坐标 (经纬度)
|
||
nt : 每个模式输出文件的时间段个数
|
||
dt : 每个模式输出文件的时间间隔 (小时)
|
||
var_list : 模式包含的变量列表
|
||
type : 模式的类型 (只是一个标记)
|
||
globe : 地球形状设定
|
||
debug : 设置打印的信息
|
||
更新记录:
|
||
2022-08-20 22:08:27 Sola 编写源代码
|
||
2022-08-20 22:08:33 Sola 添加注释
|
||
2022-08-21 11:29:55 Sola 修改输出网格为ny, nx形式
|
||
2022-08-21 12:25:09 Sola 增加对非经纬度左下角的支持
|
||
2022-08-21 16:27:56 Sola 修正返回网格id数组类型为float的问题
|
||
2022-09-27 22:19:15 Sola 简化网格生成方法
|
||
2022-09-28 16:41:03 Sola v2 加入了列表识别, 根据__iter__属性识别合适方法
|
||
2022-09-28 16:41:38 Sola v2 加入了检测proj是否包含坐标转换的方法
|
||
2022-09-28 16:42:12 Sola v2 加入了转化传入对象为numpy数组的功能
|
||
2022-09-28 18:28:38 Sola v2 修正了计算网格id时, 未输出ix, iy的bug
|
||
2023-03-14 10:02:41 Sola v3 增加输出边界网格的功能(调整get_grid, 使其支持边界宽度及边缘网格id)
|
||
2023-03-18 15:17:40 Sola v4 删除扩展边界的选项
|
||
2023-03-18 15:18:04 Sola v4 修正输入高维数组时, 计算报错的问题
|
||
2023-03-18 16:22:17 Sola v5 增加支持获取加密网格的方法, 用于超采样清单
|
||
2023-03-19 21:53:51 Sola v0.0.2 加入了默认的网格(经纬度网格), 以方便了解功能
|
||
2023-04-29 18:54:06 Sola v0.0.3 加入了从WRF读取数据, 以及输出cartopy.crs的功能
|
||
2023-09-07 10:42:59 Sola v0.0.4 设定了默认的地球形状, 以修正默认投影与模式的偏差, 加入globe参数
|
||
感谢韩雨阳的帮助, 指出了两个差异的问题所在
|
||
2023-12-28 15:42:11 Sola v0.0.5 增加了加密网格的功能
|
||
2023-12-28 15:54:53 Sola v0.0.6 增加了获取绘图范围的功能, 并使其接受浮点数输入
|
||
2024-07-22 20:36:52 Sola v0.0.7 增加了判断坐标(坐标数组)是否在模式网格内的功能
|
||
2024-12-18 10:11:55 Sola v0.0.8 增加了与墨卡托投影相关的计算内容
|
||
2025-04-06 16:39:26 Sola v0.0.9 增加提供网格中心坐标计算网格的功能(优先级低于左下角坐标)
|
||
2025-04-06 16:45:22 Sola v0.0.10 增加坐标旋转功能
|
||
修改的关键在于:
|
||
1. 在将经纬度转化为网格的时候, 围绕中心对网格进行偏移旋转, 需要增加一步后处理
|
||
2. 在将网格转化为经纬度的时候, 需要先将输入的网格ID旋转回去, 再计算其经纬度
|
||
设计的网格旋转函数需要保证旋转前后中心位置不变,各网格相对位置不变即可
|
||
注意, 这里输入的左下角坐标与通过中心计算的左下角坐标均为旋转前的
|
||
2025-07-14 15:42:22 Sola v0.0.11 增加select方法, 用于选取某个经纬度范围的数据
|
||
2025-07-14 23:24:51 Sola v0.0.12 改进了select方法, 并增加了判断是否在某个extent内的功能
|
||
测试记录:
|
||
2022-09-28 16:28:10 Sola v2 新的简化网格生成方法测试完成, 结果与旧版一致
|
||
2022-09-28 18:27:59 Sola v2 测试了使用proj_LC投影的相关方法, 网格与WRF一致
|
||
"""
|
||
try:
|
||
self.type = 'lonlat' if type is None else type # 类型
|
||
self.nx = 360 if nx is None else nx # x方向网格数
|
||
self.ny = 180 if ny is None else ny # y 方向网格数
|
||
self.projection = ccrs.PlateCarree() if proj is None else proj # 投影类别, 使用cartopy的crs提供
|
||
self.dx = 1 if dx is None else dx # 在该投影下x方向间距
|
||
self.dy = 1 if dy is None else dy # 在该投影下y方向间距
|
||
self.dt = 1 if dt is None else dt # 时间间隔(小时)
|
||
self.nt = 1 if nt is None else nt # 每个文件中包含多少时间点
|
||
self.var_list = [] if var_list is None else var_list # 变量列表
|
||
self.globe = ccrs.Globe(ellipse="sphere", semimajor_axis=6370000, semiminor_axis=6370000) if globe is None else globe
|
||
if lowerleft is None:
|
||
if not center is None:
|
||
center_x, center_y = self.projection.transform_point(center[0], center[1], ccrs.PlateCarree())
|
||
else:
|
||
center_x, center_y = 0, 0
|
||
zero_lon, zero_lat = ccrs.PlateCarree().transform_point(
|
||
center_x-self.dx*(self.nx-1)/2, center_y-self.dy*(self.ny-1)/2, self.projection)
|
||
self.lowerleft = [zero_lon, zero_lat] # 旋转前的左下角坐标
|
||
else:
|
||
if len(lowerleft) == 2:
|
||
self.lowerleft = lowerleft # 旋转前的左下角坐标(经纬度)
|
||
else:
|
||
# 这是考虑输入的左下角坐标不是经纬度, 而是某个投影系下的坐标位置, 所以先将其转化为经纬度
|
||
zero_lon, zero_lat = ccrs.PlateCarree().transform_point(\
|
||
lowerleft[0], lowerleft[1], lowerleft[2])
|
||
self.lowerleft = [zero_lon, zero_lat] # 旋转前的左下角经纬度
|
||
self.lowerleft_projxy = self.projection.transform_point(
|
||
self.lowerleft[0], self.lowerleft[1],
|
||
ccrs.PlateCarree()
|
||
) # 计算投影下的xy坐标
|
||
self.rotate = 0 if rotate_deg is None else np.deg2rad(rotate_deg) # 计算旋转的弧度(输入是角度)
|
||
if rotate_poi is None:
|
||
# 如果没有给定围绕旋转的点位, 则围绕网格中心进行旋转, 注意这里是 (x, y), 而不是 (ix, iy)
|
||
# 注意需要考虑如果指定的网格中心和投影中心不一致的情况
|
||
if not center is None:
|
||
self.rotate_poi_x, self.rotate_poi_y = center_x, center_y
|
||
else:
|
||
self.rotate_poi_x, self.rotate_poi_y = self.lowerleft_projxy[0] + (self.nx - 1)*self.dx, self.lowerleft_projxy[1] + (self.ny - 1)*self.dy
|
||
else:
|
||
# 如果
|
||
self.rotate_poi_x, self.rotate_poi_y = self.projection.transform_point(*rotate_poi, ccrs.PlateCarree())
|
||
finally:
|
||
if debug > 0:
|
||
print(f"{self.__dict__}")
|
||
|
||
def grid_id_float(self, original_x, original_y, original_proj=ccrs.PlateCarree()):
|
||
"""
|
||
获取经纬度对应的网格xy值, 返回浮点数
|
||
2022-09-28 11:05:09 Sola 更新为识别传入的对象类型, 判断是否可迭代
|
||
2022-09-28 15:21:07 Sola 增加对proj是否包含相应方法的识别
|
||
2022-09-28 18:25:24 Sola 修正正常情况下未输出ix, iy的bug
|
||
2025-04-06 20:33:29 Sola 加入坐标旋转的判断
|
||
"""
|
||
# 如果是可迭代对象, 则丢给对应的功能处理
|
||
if hasattr(original_x, '__iter__'):
|
||
ix, iy = self.grid_ids_float(original_x, original_y, original_proj)
|
||
else: # 如果非可迭代对象, 就有函数本体进行计算
|
||
# 判断投影本身是否具有计算网格ID方法
|
||
if hasattr(self.projection, 'grid_id_float'):
|
||
if original_proj != ccrs.PlateCarree():
|
||
# 如果有, 且传入坐标非经纬度坐标, 就将其转化为经纬度坐标
|
||
lon, lat = ccrs.PlateCarree().transform_point(
|
||
original_x, original_y, original_proj)
|
||
else: # 否则直接使用xy作为经纬度坐标
|
||
lon, lat = original_x, original_y
|
||
# 调用proj的方法计算经纬度
|
||
ix, iy = self.projection.grid_id_float(lon, lat)
|
||
else: # 如果投影方法本身不具备计算网格ID的方法, 那就手动计算网格
|
||
x, y = self.projection.transform_point(original_x, original_y, original_proj)
|
||
ix = (x - self.lowerleft_projxy[0])/self.dx
|
||
iy = (y - self.lowerleft_projxy[1])/self.dy
|
||
ix, iy = self.rotate_grid_revise(ix, iy)
|
||
return ix, iy
|
||
|
||
def grid_id(self, original_x, original_y, original_proj=ccrs.PlateCarree()):
|
||
"""
|
||
获取经纬度最近的网格xy值, 返回整数
|
||
2022-09-28 15:29:32 Sola 增加判断传入的是单个值还是可迭代数组的功能
|
||
"""
|
||
if hasattr(original_x, '__iter__'): # 如果传入的是可迭代对象, 则丢给对应函数处理
|
||
ix, iy = self.grid_ids(original_x, original_y, original_proj)
|
||
else: # 如果传入的是单个数值, 则由对应功能计算浮点数坐标, 然后取整
|
||
ix, iy = self.grid_id_float(original_x, original_y, original_proj)
|
||
ix, iy = [round(n) for n in [ix, iy]]
|
||
return ix, iy
|
||
|
||
def grid_ids_float(self, original_x_array, original_y_array,
|
||
original_proj=ccrs.PlateCarree()):
|
||
"""
|
||
将经纬度向量或矩阵转换为网格xy值, 返回浮点数
|
||
2022-08-21 16:34:07 Sola 修正了忘了求网格的错误(这错误太不应该了)
|
||
2022-08-21 17:53:45 Sola 修正了两个ix_array的错误(复制粘贴的恶果)
|
||
2022-09-28 15:34:39 Sola 增加判断proj是否由计算网格id的功能
|
||
2022-09-28 15:46:50 Sola 简化原本的网格计算, 使用转置的方式代替判断返回数组长度
|
||
2022-09-28 16:40:27 Sola 增加将输入数组转化为numpy数组的功能, 防止传入列表
|
||
2022-10-19 18:52:25 Sola 修正了除错距离的bug
|
||
2023-03-18 15:39:06 Sola 在计算前, 先将数组展开到1维, 返回时折叠
|
||
2025-04-06 20:33:12 Sola 加入坐标旋转的判断
|
||
注意事项:
|
||
当前存在一个bug, 输入的投影必须是cartopy的投影, 否则无法计算经纬度,
|
||
但是是否有必要在自己写的proj中加入该功能? 需要考虑
|
||
"""
|
||
original_x_array, original_y_array, shape = flat_array(\
|
||
np.array(original_x_array), np.array(original_y_array))
|
||
if hasattr(self.projection, 'grid_ids_float'): # 如果投影有相应方法
|
||
# 判断是否是经纬度坐标, 不是则转化为经纬度坐标
|
||
if original_proj != ccrs.PlateCarree():
|
||
lon_array, lat_array, _ = ccrs.PlateCarree().transform_points(
|
||
original_proj, original_x_array, original_y_array).T
|
||
lon_array, lat_array = lon_array.T, lat_array.T
|
||
else: # 如果是经纬度坐标, 则使用原来的数据
|
||
lon_array, lat_array = original_x_array, original_y_array
|
||
# 调用投影的坐标计算方法进行计算
|
||
ix_array, iy_array = self.projection.grid_ids_float(
|
||
lon_array, lat_array)
|
||
else: # 如果没有, 则采用默认方法
|
||
ix_array, iy_array, _ = self.projection.transform_points(
|
||
original_proj, original_x_array, original_y_array
|
||
).T # 计算转换后的坐标(m)(转置后)
|
||
# 将m转化为网格坐标
|
||
ix_array = ((ix_array - self.lowerleft_projxy[0])/ self.dx).T
|
||
iy_array = ((iy_array - self.lowerleft_projxy[1])/ self.dy).T
|
||
ix_array, iy_array = fold_array(ix_array, iy_array, shape)
|
||
ix_array, iy_array = self.rotate_grid_revise(ix_array, iy_array)
|
||
return ix_array, iy_array
|
||
|
||
def grid_ids(self, original_x_array, original_y_array,
|
||
original_proj=ccrs.PlateCarree()):
|
||
"""
|
||
将经纬度向量或矩阵转换为网格xy值, 返回整数
|
||
2022-08-21 16:30:39 Sola 修正了返回数组类型为float的问题
|
||
"""
|
||
ix_array, iy_array = self.grid_ids_float(
|
||
original_x_array, original_y_array, original_proj
|
||
)
|
||
ix_array, iy_array = [np.round(n_array) for n_array in [ix_array, iy_array]]
|
||
return ix_array.astype(int), iy_array.astype(int)
|
||
|
||
def grid_lonlat(self, ix, iy):
|
||
"""
|
||
通过网格id获取经纬度坐标
|
||
2022-09-28 16:03:27 Sola 增加判断传入的是数值还是数组的功能
|
||
2022-09-28 16:05:07 Sola 增加判断proj是否有计算网格的功能
|
||
2025-04-06 20:32:55 Sola 加入坐标旋转的判断
|
||
"""
|
||
if hasattr(ix, '__iter__'): # 如果传入的是可迭代对象, 则调用相应功能
|
||
lon, lat = self.grid_lonlats(ix, iy)
|
||
else: # 如果不是, 则由本函数继续运算
|
||
ix, iy = self.rotate_grid(ix, iy)
|
||
if hasattr(self.projection, 'grid_lonlat'): # 如果投影本身可以计算
|
||
lon, lat = self.projection.grid_lonlat(ix, iy) # 计算网格对应经纬度
|
||
else: # 如果投影不能根据网格ID计算经纬度, 则手动计算
|
||
# 这里则是根据网格计算了在给定投影下的坐标XY,然后将其转化为经纬度
|
||
x = self.lowerleft_projxy[0] + ix * self.dx
|
||
y = self.lowerleft_projxy[1] + iy * self.dy
|
||
lon, lat = ccrs.PlateCarree().transform_point(x, y, self.projection)
|
||
return lon, lat
|
||
|
||
def grid_lonlats(self, ix_array, iy_array):
|
||
"""
|
||
通过网格id矩阵获得经纬度坐标矩阵
|
||
2022-09-28 16:07:40 Sola 增加判断proj是否有计算网格的功能
|
||
2022-09-28 16:08:38 Sola 简化原本的网格计算, 使用转置的方式代替判断返回数组长度
|
||
2022-09-28 16:40:27 Sola 增加将输入数组转化为numpy数组的功能, 防止传入列表
|
||
2023-03-18 15:39:06 Sola 在计算前, 先将数组展开到1维, 返回时折叠
|
||
2025-04-06 20:33:56 Sola 加入坐标旋转的判断
|
||
"""
|
||
ix_array, iy_array, shape = flat_array(np.array(ix_array), np.array(iy_array))
|
||
ix_array, iy_array = self.rotate_grid(ix_array, iy_array)
|
||
if hasattr(self.projection, 'grid_lonlats'):
|
||
lon_array, lat_array = self.projection.grid_lonlats(ix_array, iy_array)
|
||
else:
|
||
x_array = self.lowerleft_projxy[0] + ix_array * self.dx
|
||
y_array = self.lowerleft_projxy[1] + iy_array * self.dy
|
||
lon_array, lat_array, _ = ccrs.PlateCarree().transform_points(
|
||
self.projection, x_array, y_array).T
|
||
lon_array, lat_array = lon_array.T, lat_array.T
|
||
lon_array, lat_array = fold_array(lon_array, lat_array, shape)
|
||
return lon_array, lat_array
|
||
|
||
def get_grid(self, type=None):
|
||
"""
|
||
范围模式所有网格的经纬度坐标
|
||
type: None | "corner" | "edge" | "corner_2d"
|
||
2023-03-14 10:05:43 Sola 更新边界宽度的功能及边缘网格的功能
|
||
获取的边缘网格从左下角开始顺时针排序(左优先)
|
||
2023-03-14 10:30:23 Sola 经过测试, 代码可以正常运行
|
||
2023-03-18 15:40:20 Sola 删除边界宽度的功能(没有用了)
|
||
2024-08-02 18:01:48 Sola 添加生成边界经纬度的功能
|
||
"""
|
||
# 获取网格信息, 下标从0开始
|
||
ys, xs = np.meshgrid(range(self.ny), range(self.nx), indexing='ij')
|
||
if type is None:
|
||
xlon, xlat = self.grid_lonlats(xs, ys) # 从网格信息获取经纬度信息
|
||
elif type.lower() in ["corner", "c"]: # 四角的网格 (4, ny, nx)
|
||
result = []
|
||
result.append(self.grid_lonlats(xs - 0.5, ys - 0.5))
|
||
result.append(self.grid_lonlats(xs - 0.5, ys + 0.5))
|
||
result.append(self.grid_lonlats(xs + 0.5, ys + 0.5))
|
||
result.append(self.grid_lonlats(xs + 0.5, ys - 0.5))
|
||
xlon = np.array([x[0] for x in result])
|
||
xlat = np.array([x[1] for x in result])
|
||
elif type.lower() in ["edge", "e"]: # 四边中心的网格
|
||
result = []
|
||
result.append(self.grid_lonlats(xs - 0.5, ys))
|
||
result.append(self.grid_lonlats(xs, ys + 0.5))
|
||
result.append(self.grid_lonlats(xs + 0.5, ys))
|
||
result.append(self.grid_lonlats(xs, ys - 0.5))
|
||
xlon = np.array([x[0] for x in result])
|
||
xlat = np.array([x[1] for x in result])
|
||
elif type.lower() in ["corner_2d", "c2d"]: # 四角网络 (ny + 1, nx + 1)
|
||
ys, xs = np.meshgrid(range(self.ny+1), range(self.nx+1), indexing='ij')
|
||
xlon, xlat = self.grid_lonlats(xs-0.5, ys-0.5)
|
||
return xlon, xlat
|
||
|
||
def get_density_grid(self, density=10, flat=False):
|
||
"""
|
||
获取一个更密的网格, 原先的每个网格均匀返回多个点, 例如返回10*10=100个点
|
||
可用于超采样, 以进行清单的分配等操作, 注意不要设置太大的密度, 否则
|
||
可能内存会寄
|
||
更新记录:
|
||
2023-03-18 16:09:39 Sola 编写源代码
|
||
2023-03-18 16:21:46 Sola 测试功能正常, 从网格到经纬度及反向都正常
|
||
2023-10-18 16:19:10 Sola 增加了将结果展开成2D的功能
|
||
2023-12-28 15:38:53 Sola 调整了数组顺序, 方便最终展开
|
||
"""
|
||
|
||
jj, sub_jj, ii, sub_ii = np.meshgrid(range(self.ny), range(density),
|
||
range(self.nx), range(density), indexing='ij')
|
||
fii = ii - 0.5 + (sub_ii + 0.5)/density
|
||
fjj = jj - 0.5 + (sub_jj + 0.5)/density
|
||
if flat:
|
||
fii = fii.reshape((self.ny*density, self.nx*density))
|
||
fjj = fjj.reshape((self.ny*density, self.nx*density))
|
||
xlonf, xlatf = self.grid_lonlats(fii, fjj)
|
||
|
||
return xlonf, xlatf
|
||
|
||
def get_ccrs(self):
|
||
"""
|
||
获取用于绘图的地图投影, 目前只支持兰伯特投影
|
||
"""
|
||
if type(self.projection) is proj_LC:
|
||
proj = ccrs.LambertConformal(
|
||
central_longitude = self.projection.stdlon,
|
||
standard_parallels = [
|
||
self.projection.truelat1,
|
||
self.projection.truelat2,
|
||
],
|
||
globe = self.globe
|
||
)
|
||
elif type(self.projection) is proj_MERC:
|
||
proj = ccrs.Mercator(
|
||
central_longitude=self.projection.stdlon,
|
||
globe = self.globe
|
||
)
|
||
elif self.projection.__class__.__base__ is ccrs.Projection:
|
||
proj = self.projection
|
||
else:
|
||
proj = ccrs.PlateCarree(globe = self.globe)
|
||
return proj
|
||
|
||
def get_extent(
|
||
self,
|
||
cx : float = None,
|
||
cy : float = None,
|
||
dx : float = None,
|
||
dy : float = None,
|
||
ratio : float = 1
|
||
) -> list:
|
||
"""
|
||
用于获取指定数据范围的经纬度坐标
|
||
参数:
|
||
cx: 中心点x坐标
|
||
cy: 中心点y坐标
|
||
dx: 中心点周围x网格数
|
||
dy: 中心点周围y网格数
|
||
"""
|
||
if cx is None:
|
||
cx, cy, dx, dy = self.nx/2, self.ny/2, self.nx/2, self.ny/2
|
||
# XLON, XLAT = self.get_grid()
|
||
# ys, ye, xs, xe = np.floor(cy-dy), np.ceil(cy+dy), np.floor(cx-dx), np.ceil(cx+dx)
|
||
lon_start, _ = self.grid_lonlat(cx-dx*ratio, cy)
|
||
lon_end, _ = self.grid_lonlat(cx+dx*ratio, cy)
|
||
_, lat_start = self.grid_lonlat(cx, cy-dy*ratio)
|
||
_, lat_end = self.grid_lonlat(cx, cy+dy*ratio)
|
||
# if lon_start > lon_end:
|
||
# lon_end += 360
|
||
# XLON, XLAT = XLON[cy-dy:cy+dy, cx-dx:cx+dx], XLAT[cy-dy:cy+dy, cx-dx:cx+dx]
|
||
# clon, clat = np.mean(XLON), np.mean(XLAT)
|
||
# dlon, dlat = (np.max(XLON) - np.min(XLON))/2*ratio, (np.max(XLAT) - np.min(XLAT))/2*ratio
|
||
# clon, clat = (lon_end + lon_start)/2, (lat_end + lat_start)/2
|
||
# dlon, dlat = (lon_end - lon_start)/2*ratio, (lat_end - lat_start)/2*ratio
|
||
# extent = [(clon-dlon+180)%360-180, (clon+dlon+180)%360-180, clat-dlat if clat-dlat>=-90 else -90, clat+dlat if clat+dlat<=90 else 90]
|
||
constrain_lon = lambda x: (x+180)%360-180
|
||
constrain_lat = lambda x: min(abs(x), 90) * (1 if x > 0 else -1)
|
||
extent = [constrain_lon(lon_start), constrain_lon(lon_end), constrain_lat(lat_start), constrain_lat(lat_end)]
|
||
return extent
|
||
|
||
def is_in_domain(self, origin_x, origin_y, use_float=False, extent=None):
|
||
"""
|
||
用于判断坐标(经纬度)是否在模式网格范围内
|
||
Update:
|
||
2025-05-05 00:13:01 Sola 修正使用浮点数计算时的问题
|
||
"""
|
||
if use_float:
|
||
ix, iy = self.grid_id_float(origin_x, origin_y)
|
||
else:
|
||
ix, iy = self.grid_id(origin_x, origin_y)
|
||
if extent is None:
|
||
xs, xe, ys, ye = 0, self.nx - 1, 0, self.ny - 1
|
||
else:
|
||
xs, xe, ys, ye = self.get_select_xy_offset(extent)
|
||
xe, ye = xe - 1, ye - 1
|
||
result = (xs <= ix) & (ix <= xe) & (ys <= iy) & (iy <= ye)
|
||
return result
|
||
|
||
def rotate_xy(self, x, y, rotate_rad=None):
|
||
rotate_rad = self.rotate if rotate_rad is None else rotate_rad
|
||
x_new, y_new = rotate_xy(x, y, self.rotate_poi_x, self.rotate_poi_y, rotate_rad)
|
||
return x_new, y_new
|
||
|
||
def rotate_xy_revise(self, x, y, rotate_rad=None):
|
||
rotate_rad = self.rotate if rotate_rad is None else rotate_rad
|
||
x_new, y_new = rotate_xy(x, y, self.rotate_poi_x, self.rotate_poi_y, -rotate_rad)
|
||
return x_new, y_new
|
||
|
||
def rotate_grid(self, ix, iy, rotate_rad=None):
|
||
rotate_rad = self.rotate if rotate_rad is None else rotate_rad
|
||
if np.sum(np.abs(rotate_rad % (np.pi*2)) > 1e-8):
|
||
x, y = self.lowerleft_projxy[0] + ix*self.dx, self.lowerleft_projxy[1] + iy*self.dy
|
||
x_new, y_new = self.rotate_xy(x, y, rotate_rad)
|
||
ix_new, iy_new = (x_new - self.lowerleft_projxy[0])/self.dx, (y_new - self.lowerleft_projxy[1])/self.dy
|
||
else:
|
||
ix_new, iy_new = ix, iy
|
||
return ix_new, iy_new
|
||
|
||
def rotate_grid_revise(self, ix, iy, rotate_rad=None):
|
||
rotate_rad = self.rotate if rotate_rad is None else rotate_rad
|
||
if np.sum(np.abs(rotate_rad % (np.pi*2)) > 1e-8):
|
||
x, y = self.lowerleft_projxy[0] + ix*self.dx, self.lowerleft_projxy[1] + iy*self.dy
|
||
x_new, y_new = self.rotate_xy_revise(x, y, rotate_rad)
|
||
ix_new, iy_new = (x_new - self.lowerleft_projxy[0])/self.dx, (y_new - self.lowerleft_projxy[1])/self.dy
|
||
else:
|
||
ix_new, iy_new = ix, iy
|
||
return ix_new, iy_new
|
||
|
||
def get_select_xy_extent(self, extent: list = [-180, 180, -90, 90]):
|
||
"""
|
||
根据经纬度范围获取坐标范围
|
||
"""
|
||
nx, ny = self.nx, self.ny
|
||
lon_s, lon_e, lat_s, lat_e = extent
|
||
lon_list = np.concatenate([
|
||
np.linspace(lon_s, lon_e, nx-1),
|
||
np.linspace(lon_e, lon_e, ny-1),
|
||
np.linspace(lon_e, lon_s, nx-1),
|
||
np.linspace(lon_s, lon_s, ny-1)
|
||
])
|
||
lat_list = np.concatenate([
|
||
np.linspace(lat_s, lat_s, nx-1),
|
||
np.linspace(lat_s, lat_e, ny-1),
|
||
np.linspace(lat_e, lat_e, nx-1),
|
||
np.linspace(lat_e, lat_s, ny-1)
|
||
])
|
||
x_list, y_list = self.grid_id_float(lon_list, lat_list)
|
||
xs_float, xe_float, ys_float, ye_float = np.min(x_list), np.max(x_list), np.min(y_list), np.max(y_list)
|
||
return xs_float, xe_float, ys_float, ye_float
|
||
|
||
def get_select_xy_offset(self, extent: list = [-180, 180, -90, 90]):
|
||
"""
|
||
根据经纬度范围获取坐标偏移量
|
||
"""
|
||
nx, ny = self.nx, self.ny
|
||
xs_float, xe_float, ys_float, ye_float = self.get_select_xy_extent(extent)
|
||
limit_range = lambda x, vmin, vmax: x + (vmin - x)*(x < vmin) - (x - vmax)*(x > vmax) # x \in [xs, xe]
|
||
xs, xe, ys, ye = round(xs_float), round(xe_float), round(ys_float), round(ye_float)
|
||
xs, xe = limit_range(xs, 0, nx-1), limit_range(xe, 0, nx-1)+1
|
||
ys, ye = limit_range(ys, 0, ny-1), limit_range(ye, 0, ny-1)+1
|
||
return xs, xe, ys, ye
|
||
|
||
|
||
def select(self, data, extent: list = [-180, 180, -90, 90]):
|
||
"""
|
||
根据经纬度范围截取数据
|
||
"""
|
||
xs, xe, ys, ye = self.get_select_xy_offset(extent)
|
||
data_select = data[ys:ye, xs:xe]
|
||
return data_select
|
||
|
||
|
||
def rotate_xy(xx, yy, cx, cy, rad):
|
||
xx_offset = (xx - cx)*np.cos(rad) - (yy - cy)*np.sin(rad)
|
||
yy_offset = (xx - cx)*np.sin(rad) + (yy - cy)*np.cos(rad)
|
||
xx_new, yy_new = cx + xx_offset, cy + yy_offset
|
||
return xx_new, yy_new
|
||
|
||
def flat_array(
|
||
x : np.ndarray,
|
||
y : np.ndarray
|
||
) -> tuple:
|
||
|
||
"""
|
||
用于将数组展开, 并检查数组性质是否一致
|
||
更新记录:
|
||
2023-03-18 15:25:30 Sola 编写源代码
|
||
"""
|
||
|
||
shape = x.shape
|
||
if not shape == y.shape:
|
||
print(f"[WARNING] dimension mismatch, {x.shape}, {y.shape}")
|
||
x, y = x.reshape(-1), y.reshape(-1)
|
||
|
||
return x, y, shape
|
||
|
||
|
||
def fold_array(
|
||
x : np.ndarray,
|
||
y : np.ndarray,
|
||
shape : tuple
|
||
) -> tuple:
|
||
|
||
"""
|
||
用于将展开的数组折叠回去
|
||
更新记录:
|
||
2023-03-18 15:26:42 Sola 编写源代码
|
||
"""
|
||
|
||
x, y = x.reshape(shape), y.reshape(shape)
|
||
|
||
return x, y
|
||
|
||
|
||
def from_wrf(file: str) -> model_info_2d:
|
||
"""
|
||
接受一个文件路径, 其应当是一个由WPS或WRF输出的文件, 包含了WRF模式网格的相关
|
||
信息. 仅识别兰伯特投影
|
||
更新记录:
|
||
2023-04-29 18:36:30 Sola 编写源代码
|
||
"""
|
||
|
||
# import need library
|
||
import netCDF4 as nc
|
||
# open dataset
|
||
with nc.Dataset(file) as nf:
|
||
dx, dy = nf.DX, nf.DY
|
||
nx, ny = nf.dimensions["west_east"].size, nf.dimensions["south_north"].size
|
||
truelat1 = nf.TRUELAT1
|
||
stdlon = nf.STAND_LON
|
||
lat1, lon1 = nf.CEN_LAT, nf.CEN_LON
|
||
if nf.MAP_PROJ == 1: # Lambert proj
|
||
truelat2 = nf.TRUELAT2
|
||
# make projection
|
||
proj = proj_LC(dx=dx, dy=dy, truelat1=truelat1, truelat2=truelat2,
|
||
lat1=lat1, lon1=lon1, stdlon=stdlon, nx=nx, ny=ny)
|
||
elif nf.MAP_PROJ == 3: # Mercator proj
|
||
proj = proj_MERC(dx=dx, dy=dy, truelat1=truelat1, lat1=lat1,
|
||
lon1=lon1, stdlon=stdlon, nx=nx, ny=ny)
|
||
elif nf.MAP_PROJ == 6: # lon-lat proj
|
||
proj = ccrs.PlateCarree
|
||
dx /= 111177.473
|
||
dy /= 111177.473
|
||
|
||
# make model_info
|
||
model = model_info_2d(proj=proj, nx=nx, ny=ny, dx=dx, dy=dy,
|
||
lowerleft=proj.grid_lonlat(0, 0))
|
||
return model
|
||
|
||
def from_ctl(file: str) -> model_info_2d:
|
||
with open(file, "r") as f:
|
||
lines = f.readlines()
|
||
for line in lines:
|
||
if "PDEF" in line.upper():
|
||
if "LCC" in line.upper():
|
||
_, nx, ny, _, lat1, lon1, knowi, knowj, truelat1, truelat2, stdlon, dx, dy = line.split()
|
||
nx, ny = int(nx), int(ny)
|
||
lat1, lon1, knowi, knowj, truelat1, truelat2, stdlon, dx, dy =\
|
||
float(lat1), float(lon1), float(knowi), float(knowj), float(truelat1), float(truelat2), float(stdlon), float(dx), float(dy)
|
||
proj = proj_LC(dx=dx, dy=dy, truelat1=truelat1, truelat2=truelat2, lat1=lat1, lon1=lon1,
|
||
knowni=knowi, knownj=knowj, stdlon=stdlon, nx=nx, ny=ny)
|
||
model = model_info_2d(proj=proj, nx=nx, ny=ny, dx=dx, dy=dy, lowerleft=proj.grid_lonlat(0, 0))
|
||
return model
|