add note 20251001

This commit is contained in:
2025-10-02 14:49:27 +08:00
parent 389fdea5ae
commit 394e8d0d76
4 changed files with 89 additions and 88 deletions

View File

@ -18,23 +18,23 @@
!
! Module Routines:
! ============================================================================
! (1 ) READ_INPUT_ADJ_FILE : Driver routine for reading GEOS-CHEM input file
! (2 ) READ_ONE_LINE : Reads one line at a time
! (3 ) SPLIT_ONE_LINE : Splits one line into substrings (by spaces)
! (4 ) READ_ADJ_SIMULATION_MENU : Reads the GEOS-Chem adjoint simulation menu
! (5 ) READ_FWD_MODEL_MENU : Reads forward model options
! (6 ) READ_ADJ_OPTIONS_MENU : Reads adjoint model options
! (7 ) READ_ADJ_DIRECTORIES_MENU : Reads the GEOS-Chem adj. directories
! (8 ) READ_CONTROL_VARS_MENU: Reads what are control variables
! (9 ) READ_OBSERVATION_MENU : Reads vars related to observations
! (10) READ_FD_ MENU : Reads finite difference test variables
! (11) READ_ADJ_DIAGNOSTICS_MENU : Reads the GEOS-Chem adj. diagnostic menu
! (12) VALIDATE_DIRECTORIES : Makes sure all given directories are valid
! (13) ARE_FLAGS_VALID : Makes sure all flags are valid/not conflicting
! (14) CHECK_DIRECTORY : Checks a single directory for errors
! (15) CLEAN_FILE_DIRS : Clean out directories
! (16) INIT_DEP_MAPS : Make mapping arrays for dep adjoint forcing
! (17) INIT_INPUT_ADJ : Initializes directory & logical variables
! (1 ) READ_INPUT_ADJ_FILE : Driver routine for reading GEOS-CHEM input file 读取 GC 输入文件
! (2 ) READ_ONE_LINE : Reads one line at a time 一次读取一行
! (3 ) SPLIT_ONE_LINE : Splits one line into substrings (by spaces) 通过空格分割文本
! (4 ) READ_ADJ_SIMULATION_MENU : Reads the GEOS-Chem adjoint simulation menu 读取伴随设定
! (5 ) READ_FWD_MODEL_MENU : Reads forward model options 读取正向模拟选项
! (6 ) READ_ADJ_OPTIONS_MENU : Reads adjoint model options 读取伴随模式选项
! (7 ) READ_ADJ_DIRECTORIES_MENU : Reads the GEOS-Chem adj. directories 读取 GC 伴随路径
! (8 ) READ_CONTROL_VARS_MENU: Reads what are control variables 读取控制变量
! (9 ) READ_OBSERVATION_MENU : Reads vars related to observations 读取观测相关变量
! (10) READ_FD_ MENU : Reads finite difference test variables 读取有限差分测试变量
! (11) READ_ADJ_DIAGNOSTICS_MENU : Reads the GEOS-Chem adj. diagnostic menu 读取伴随诊断菜单
! (12) VALIDATE_DIRECTORIES : Makes sure all given directories are valid 确认给定目录有效
! (13) ARE_FLAGS_VALID : Makes sure all flags are valid/not conflicting 确认所有选项游戏哦啊
! (14) CHECK_DIRECTORY : Checks a single directory for errors 确认单个路径
! (15) CLEAN_FILE_DIRS : Clean out directories 清除路径
! (16) INIT_DEP_MAPS : Make mapping arrays for dep adjoint forcing 创建伴随强迫的映射数组
! (17) INIT_INPUT_ADJ : Initializes directory & logical variables 初始化路径
!
! GEOS-CHEM modules referenced by "input_adj_mod.f"
! ============================================================================

View File

@ -780,7 +780,7 @@
CALL READ_INPUT_FILE
IF ( LPRT ) CALL DEBUG_MSG( '### INVERSE: a READ_INPUT_FILE' )
! Read final iteration number from file
! Read final iteration number from file 先读入当前的迭代情况
OPEN( 65, file = 'ITER' )
READ( 65,*) N_CALC_STOP
READ ( 65,*) N_CALC_TOTAL
@ -802,7 +802,7 @@
IF (LADJ) CALL INIT_SETULB
! Initialize inverse modeling module
CALL INIT_INVERSE
CALL INIT_INVERSE ! 大概就是初始化了反演相关的数组
! Curent iteration
N_CALC = 0
@ -908,7 +908,7 @@
ENDDO
#endif
task = 'START'
task = 'START' ! 初始化当前过程为开始
! Mare array of scaling factors into a vector for optimization
CALL GET_X_FROM_SF
@ -942,7 +942,7 @@
print*, ' done setulb ' , TASK
CALL SAVE_WEAK_CONSTRAINT_FIELDS
CALL SAVE_WEAK_CONSTRAINT_FIELDS ! 如果是弱约束,会先输出一个弱约束场
ELSE
@ -959,55 +959,55 @@
ENDIF
! Force it to continue for FD tests, as cost func or gradients
! may be very small or zero (dkh, 02/11/11)
IF ( LFDTEST ) TASK(1:2) = 'FG'
! may be very small or zero (dkh, 02/11/11) 如果进行有限差分测试,则强制继续进行
IF ( LFDTEST ) TASK(1:2) = 'FG' ! 不对,可能是要避免迭代出结果的情况?
IF ( TASK(1:2) == 'FG' ) THEN
! Iteration diagnostics (zhe 11/28/10)
! Iteration diagnostics (zhe 11/28/10) 迭代诊断的输出
IF ( LITR ) THEN
IF ( N_CALC .GT. 0 ) CALL ITER_CONDITION( N_CALC )
LATF = .FALSE.
ENDIF
! The minimization routine has returned to request the
! function f and gradient g values at the current x
! function f and gradient g values at the current x 让梯度为 0 了
! Update iteration count
! Update iteration count 继续增加迭代次数
N_CALC = N_CALC + 1
! Resent cost function for this iteration
! Resent cost function for this iteration
COST_FUNC = 0.D0
IF ( N_CALC < N_CALC_STOP ) THEN
IF ( N_CALC < N_CALC_STOP ) THEN ! 如果在停止迭代之前,则从硬盘中读取相关数据
WRITE(6,*) 'READING SAVED DATA for N_CALC = ', N_CALC
! Read scaling factor values from disk
! Read scaling factor values from disk 读取缩放因子
CALL GET_SF_FROM_X
CALL DISPLAY_STUFF( 1 )
! Read gradients from disk
! Read gradients from disk 读取梯度结果
CALL READ_GDT_FILE
! Read cost function from disk
! Read cost function from disk 读取代价函数结果
CALL READ_CFN_FILE
! Put adjoints into GRADNT vector
! Put adjoints into GRADNT vector 将伴随放到向量中
CALL GET_GRADNT_FROM_ADJ
!mkeller: read gradients with respect to forcing terms
IF ( DO_WEAK_CONSTRAINT ) CALL READ_GDT_U_FILE
!Save the current adjoint in the finite difference test cell
! Initial conditions test
! Initial conditions test 意思是现在不能进行同时优化初始场和排放的有限差分测试?
IF ( LFDTEST .AND. LICS .AND. LADJ_EMS) THEN
PRINT*, 'WE HAVE A PROBLEM WITH STT_ADJ_FD when LICS &
& LADJ_EMS are both TRUE'
ELSEIF ( LFDTEST .AND. LICS ) THEN
ELSEIF ( LFDTEST .AND. LICS ) THEN ! STT_ADJ_FD 中
STT_ADJ_FD(N_CALC) = ICS_SF_ADJ(IFD,JFD,LFD,NFD)
@ -1049,7 +1049,7 @@
! Return to beginning of loop
ELSEIF ( N_CALC == N_CALC_STOP ) THEN
ELSEIF ( N_CALC == N_CALC_STOP ) THEN ! 达到迭代结束次数,结束迭代
! Done if we are just estimating inverse Hessian (dkh, 01/12/12, adj32_012)
IF ( LINVH ) THEN
@ -1057,20 +1057,20 @@
STOP
ENDIF
! UPDATE THE INITIAL CONDITIONS
! UPDATE THE INITIAL CONDITIONS 如果达到了最终迭代的条件,则更新初始条件
! If we're doing a finite difference test, reset to the orginal
! SF and augment by amount FD_DIFF. Don't use X in this case.
! old:
!IF ( ACTIVE_VARS == 'FDTEST' .AND. N_CALC == 2 ) THEN
! new: now support 2nd order FDTEST (MAKE_SAVE_FILE_2)
! new: now support 2nd order FDTEST (MAKE_SAVE_FILE_2) 做二阶有限差分的
IF ( LFDTEST .AND. N_CALC > 1 ) THEN
CALL SET_SF_FORFD
ELSEIF ( N_CALC == 1 ) THEN
! don't need to call this again ??
! don't need to call this again ?? 的是只做一次就行
!CALL SET_SF
#if defined ( LOG_OPT )
CALL SET_LOG_SF
@ -1080,7 +1080,7 @@
ELSE
! Update the scaling factors to the current X
! Update the scaling factors to the current X 更新缩放系数
CALL GET_SF_FROM_X
ENDIF
@ -1094,12 +1094,12 @@
!CALL READ_SF_FILE
!==============================================================
! FORWARD RUN
! FORWARD RUN 怎么又做了一次正向模拟
!==============================================================
CALL DO_GEOS_CHEM
!==============================================================
! ADJOINT CALCULATION
! ADJOINT CALCULATION 然后又做了一次伴随
!==============================================================
! For weak constraint 4D-Var (mkeller, 06/15)
@ -1109,7 +1109,7 @@
CALL DO_GEOS_CHEM_ADJ
! For finite difference test, we may or may not do adjoint
! For finite difference test, we may or may not do adjoint 哈哈哈哈哈哈哈笑死MAYBE_DO
ELSE
CALL MAYBE_DO_GEOS_CHEM_ADJ
@ -1117,31 +1117,31 @@
ENDIF
!==============================================================
! SAVE RESULTS TO DISK and EXIT OPTIMIZATION LOOP
! SAVE RESULTS TO DISK and EXIT OPTIMIZATION LOOP ,然后退出最优化循环
!==============================================================
! Zero the gradients of the species that we do not wish to optimize
! or in places that you don't want optimized
! or in places that you don't want optimized 为 0
CALL SET_OPT_RANGE
! Add to this Kumaresh's spatial filter
! Write gradients
! Write gradients 写入梯度文件
CALL MAKE_GDT_FILE
! Write scaling factors
! Write scaling factors 写入缩放因子
CALL MAKE_SF_FILE
! Write cost function
! Write cost function 写入代价函数
CALL MAKE_CFN_FILE
! For weak constraint 4D-Var (mkeller, 06/15)
! For weak constraint 4D-Var (mkeller, 06/15) 写入弱约束项
IF ( DO_WEAK_CONSTRAINT ) CALL MAKE_GDT_U_FILE
! mkeller: create HDF5 file for satellite diagnostics output
! mkeller: create HDF5 file for satellite diagnostics output 写入卫星诊断输出
IF ( LSAT_HDF_L2 .OR. LSAT_HDF_L3 .OR. LDCOSAT )
& CALL DO_SAT_DIAGS()
IF ( LEMS_ABS ) CALL MAKE_EMS_ADJ_FILE
IF ( LEMS_ABS ) CALL MAKE_EMS_ADJ_FILE ! 写入排放文件
! Write results to screen
CALL DISPLAY_STUFF( 4 )
@ -1164,7 +1164,7 @@
ELSE
! We terminate execution when TASK is neither FG nor NEW_X.
! We terminate execution when TASK is neither FG nor NEW_X. 好像明白了 FG 是什么,最终迭代么
! We print the information contained in the string TASK
! if the default output is not used and the execution is
! not stopped intentionally by the user.
@ -1179,7 +1179,7 @@
ENDIF
!=================================================================
! OPTIMIZATION loop ends here!
! OPTIMIZATION loop ends here! 结束最优化的过程
!=================================================================
ENDDO
WRITE( 6, '(a)' ) REPEAT( '=', 79 )
@ -1206,7 +1206,7 @@
ENDIF
#endif
! Clean up and quit
! Clean up and quit 清除一些中间文件
CALL CLOSE_FILES
CALL CLEANUP
CALL CLEANUP_ADJ
@ -1214,7 +1214,7 @@
! For weak constraint 4D-Var (mkeller, 06/15)
IF ( DO_WEAK_CONSTRAINT ) CALL CLEAN_WEAK_CONSTRAINT
! Remove all met files from temporary directory
! Remove all met files from temporary directory 清除气象场文件
IF ( LUNZIP ) THEN
CALL UNZIP_A3_FIELDS( 'remove all' )
CALL UNZIP_A6_FIELDS( 'remove all' )
@ -1231,7 +1231,7 @@
ENDIF
! Write the final iteration number for the next iteration to file
! Write the final iteration number for the next iteration to file 写入迭代文件的信息
OPEN( 65, file = 'ITER' )
WRITE( 65,*) N_CALC_STOP + 1
CLOSE( 65 )

View File

@ -7,17 +7,18 @@
! on SGI, it didn't work on Linux, so had to move all to a module.
! (dkh, 02/05)!
! Module Variables:
! 模块 INVERSE_MOD 包含了所有用于反演的子程序。只能在 SGI 运行,无法在 Linux 运行?
! ============================================================================
! (1 ) COST_FUNC (REAL*8) : Value of cost function
! (2 ) N_CALC (INTEGER) : Optimization iteration number
! (3 ) N_CALC_STOP (INTEGER) : Maximum optimization iteration number
! (4 ) F (DOUBLE) : For optimization routine
! (5 ) X (DOUBLE, ALLOC): Vector of active varialbes
! (6 ) GRADNT (DOUBLE, ALLOC): Vector of adjoint gradients
! (7 ) XP (DOUBLE, ALLOC): Vector of active strat prod varialbes
! (8 ) GRADNT_P (DOUBLE, ALLOC): Vector of strat prod adjoint gradients
! (9 ) XL (DOUBLE, ALLOC): Vector of active strat loss varialbes
! (10) GRADNT_L (DOUBLE, ALLOC): Vector of adjoint strat loss gradients
! (1 ) COST_FUNC (REAL*8) : Value of cost function 代价函数值
! (2 ) N_CALC (INTEGER) : Optimization iteration number 迭代次数
! (3 ) N_CALC_STOP (INTEGER) : Maximum optimization iteration number 最大迭代次数
! (4 ) F (DOUBLE) : For optimization routine 用于最优化的进程
! (5 ) X (DOUBLE, ALLOC): Vector of active varialbes 激活的状态变量
! (6 ) GRADNT (DOUBLE, ALLOC): Vector of adjoint gradients 伴随梯度向量
! (7 ) XP (DOUBLE, ALLOC): Vector of active strat prod varialbes 平流层源
! (8 ) GRADNT_P (DOUBLE, ALLOC): Vector of strat prod adjoint gradients 平流层源梯度
! (9 ) XL (DOUBLE, ALLOC): Vector of active strat loss varialbes 平流层汇
! (10) GRADNT_L (DOUBLE, ALLOC): Vector of adjoint strat loss gradients 平流层汇梯度
!
! Module Routines
! ============================================================================
@ -5472,7 +5473,7 @@ C ---------- LAST CARD OF DRAN ----------
!
!******************************************************************************
! Subroutine CALC_NOPT calculates the number of paramteres to optimize
!
! 子程序用于计算需要优化的参数数量
! NOTES:
! (1 ) Set NOPT for initial conditions to 3D: IIPAR*JJPAR*LLPAR*N_TRACERS to
! be consistent with other parts of the code (mak, 6/18/09)

View File

@ -64,29 +64,29 @@ c This subroutine partitions the working arrays wa and iwa, and
c then uses the limited memory BFGS method to solve the bound
c constrained optimization problem by calling mainlb.
c (The direct method will be used in the subspace minimization.)
c
c n is an integer variable.
c 看上去就是一个利用有限内存进行最优化的程序?
c n is an integer variable. problem 的维度大小
c On entry n is the dimension of the problem.
c On exit n is unchanged.
c
c m is an integer variable.
c m is an integer variable. 可用的变量最大数量
c On entry m is the maximum number of variable metric corrections
c used to define the limited memory matrix.
c On exit m is unchanged.
c
c x is a double precision array of dimension n.
c x is a double precision array of dimension n. 状态向量,维度为 n
c On entry x is an approximation to the solution.
c On exit x is the current approximation.
c
c l is a double precision array of dimension n.
c l is a double precision array of dimension n. 状态变量的下边界(预设好的)
c On entry l is the lower bound on x.
c On exit l is unchanged.
c
c u is a double precision array of dimension n.
c u is a double precision array of dimension n. 状态变量的上边界(预设好的)
c On entry u is the upper bound on x.
c On exit u is unchanged.
c
c nbd is an integer array of dimension n.
c nbd is an integer array of dimension n. 指定了边界是如何约束变量的
c On entry nbd represents the type of bounds imposed on the
c variables, and must be specified as follows:
c nbd(i)=0 if x(i) is unbounded,
@ -95,15 +95,15 @@ c 2 if x(i) has both lower and upper bounds, and
c 3 if x(i) has only an upper bound.
c On exit nbd is unchanged.
c
c f is a double precision variable.
c f is a double precision variable. 代价函数值?
c On first entry f is unspecified.
c On final exit f is the value of the function at x.
c
c g is a double precision array of dimension n.
c g is a double precision array of dimension n. 梯度数组,和状态向量的维度一致
c On first entry g is unspecified.
c On final exit g is the value of the gradient at x.
c
c factr is a double precision variable.
c factr is a double precision variable. 大概是一个最优化的临界值,到该值后结束迭代
c On entry factr >= 0 is specified by the user. The iteration
c will stop when
c
@ -115,7 +115,7 @@ c low accuracy; 1.d+7 for moderate accuracy; 1.d+1 for extremely
c high accuracy.
c On exit factr is unchanged.
c
c pgtol is a double precision variable.
c pgtol is a double precision variable. 一个用户指定的值,用于指定迭代结束的条件,用于和梯度投影的长度比较
c On entry pgtol >= 0 is specified by the user. The iteration
c will stop when
c
@ -124,15 +124,15 @@ c
c where pg_i is the ith component of the projected gradient.
c On exit pgtol is unchanged.
c
c wa is a double precision working array of length
c wa is a double precision working array of length 用于计算的数组,这里就是外面状态向量计算的公式
c (2mmax + 5)nmax + 12mmax^2 + 12mmax.
c
c iwa is an integer working array of length 3nmax.
c iwa is an integer working array of length 3nmax. 同样也是用于计算的数组
c
c task is a working string of characters of length 60 indicating
c task is a working string of characters of length 60 indicating 作业状态说明
c the current job when entering and quitting this subroutine.
c
c iprint is an integer variable that must be set by the user.
c iprint is an integer variable that must be set by the user. 指定了如何输出结果
c It controls the frequency and type of output generated:
c iprint<0 no output is generated;
c iprint=0 print only one line at the last iteration;
@ -143,9 +143,9 @@ c iprint>100 print details of every iteration including x and g;
c When iprint > 0, the file iterate.dat will be created to
c summarize the iteration.
c
c csave is a working string of characters of length 60.
c csave is a working string of characters of length 60. 同样保存了作业状态的文本
c
c lsave is a logical working array of dimension 4.
c lsave is a logical working array of dimension 4. 用于指定任务状态的一个逻辑数组
c On exit with 'task' = NEW_X, the following information is
c available:
c If lsave(1) = .true. then the initial X has been replaced by
@ -154,7 +154,7 @@ c If lsave(2) = .true. then the problem is constrained;
c If lsave(3) = .true. then each variable has upper and lower
c bounds;
c
c isave is an integer working array of dimension 44.
c isave is an integer working array of dimension 44. 一些更具体的状态标记
c On exit with 'task' = NEW_X, the following information is
c available:
c isave(22) = the total number of intervals explored in the
@ -181,7 +181,7 @@ c active constraints in the current iteration;
c isave(41) = the number of variables entering the set of active
c constraints in the current iteration.
c
c dsave is a double precision working array of dimension 29.
c dsave is a double precision working array of dimension 29. 大概是一些任务的结果
c On exit with 'task' = NEW_X, the following information is
c available:
c dsave(1) = current 'theta' in the BFGS matrix;
@ -210,7 +210,7 @@ c
c L-BFGS-B Library ... mainlb.
c
c
c References:
c References: 居然还有参考文献
c
c [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
c memory algorithm for bound constrained optimization'',
@ -494,7 +494,7 @@ c ************
double precision one,zero
parameter (one=1.0d0,zero=0.0d0)
if (task .eq. 'START') then
if (task .eq. 'START') then ! 如果作业状态是开始
epsmch = epsilon(one)
@ -634,7 +634,7 @@ c restore the previous iterate.
c Compute f0 and g0.
task = 'FG_START'
task = 'FG_START' ! 如果作业状态不是开始,则设置为 FG_START让驱动器继续计算代价函数和梯度
c return to the driver to calculate f and g; reenter at 111.
goto 1000
111 continue